
5156 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 6, NOVEMBER/DECEMBER 2024

SPT: Security Policy Translator for Network Security
Functions in Cloud-Based Security Services

Patrick Lingga , Student Member, IEEE, Jaehoon Jeong , Member, IEEE, Jinhyuk Yang , Student Member, IEEE,
and Jeonghyeon Kim , Student Member, IEEE

Abstract—Interface to Network Security Functions (I2NSF)
Working Group within Internet Engineering Task Force (IETF)
has developed a framework and its interfaces with YANG data
models for configuring Network Security Functions (NSF). These
models include a high-level security policy (i.e., an overview of
configuration) and a low-level security policy (i.e., a detailed and
specific configuration) to facilitate the configuration of NSFs. In this
paper, a Security Policy Translator (SPT) is proposed to translate
high-level security policies created by users into the corresponding
low-level security policies. It leverages the design of I2NSF YANG
data models to accurately translate security policies. The SPT per-
forms a translation by extracting the high-level security principles
using Deterministic Finite Automaton (DFA) construction from the
high-level YANG data model. It converts the extracted informa-
tion to a low-level form by utilizing a mapping model created by
comparing the two YANG data models, such as the Consumer-
Facing Interface (CFI) and NSF-Facing Interface (NFI) YANG data
models. It selects the optimal NSFs based on the security policies
to provide maximum security performance. It generates low-level
security policies for the NSFs to deploy the security services. The
proposed approach allows security policy translation for the I2NSF
framework with high accuracy and speed.

Index Terms—Network management, network security, network
automation, I2NSF, policy translator.

I. INTRODUCTION

THE rapid development of computer networks in recent
years has changed the way people live, work, and commu-

nicate. With the introduction of the 5G networks, the availability
and quality of the Internet have reached a new level. Sharing
information over the Internet is a normal practice for most
of the world’s population. There are many types of services
available on the Internet, such as e-commerce, social media,
online entertainment, and messaging. The great convenience of
the Internet makes more and more users take advantage of those
types of services. According to DataReportal [1], the number

Manuscript received 11 April 2023; revised 21 February 2024; accepted 27
February 2024. Date of publication 29 February 2024; date of current version
13 November 2024. This work was supported by Institute of Information &
Communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) under Grant 2022-0-01015 and Grant 2022-0-01199.
(Corresponding author: Jaehoon Jeong.)

Patrick Lingga and Jinhyuk Yang are with the Department of Electrical and
Computer Engineering, Sungkyunkwan University, Suwon 16419, South Korea
(e-mail: patricklink@skku.edu; jin.hyuk@skku.edu).

Jaehoon Jeong and Jeonghyeon Kim are with the Department of Computer
Science and Engineering, Sungkyunkwan University, Suwon 16419, South
Korea (e-mail: pauljeong@skku.edu; jeonghyeon12@skku.edu).

Digital Object Identifier 10.1109/TDSC.2024.3371788

of Internet users has recently reached 5 billion people, which is
equivalent to 63% of the entire world population. The number
of users has grown by almost 200 million over the last year and
continues to grow at a rate of 4% per year.

The increase in online activity has also led to a sprout of new
businesses and industries, many of which operate exclusively or
primarily online. This increase creates significant opportunities
for entrepreneurs and organizations, but also brings new risks
and challenges. Most companies start to focus on their core
business plans without considering the security aspects of their
systems. A growing number of online businesses are vulnerable
to risks and dangers on the Internet as more and more users
access their services. Unfortunately, many smaller businesses
may not have the resources to adequately protect themselves
against these security threats. In fact, a recent report found that
only 8% of small-sized businesses and 14% of medium-sized
businesses have a dedicated cybersecurity budget to focus on
handling security risks [2]. This presents a major challenge, as
these companies are often targeted by cyberattacks due to their
vulnerabilities.

Moreover, with the development of technology, the methods
used by cybercriminals to breach network security are changing.
This means that companies need to stay up-to-date with the latest
threats and invest in new security measures accordingly. How-
ever, meeting this requirement is often easier said than done. In
many cases, companies may not have the necessary knowledge
or resources to keep pace with the rapidly changing landscape
of network security management. Even with the proper skills
and resources, implementing and managing Network Security
Functions (NSF) can be a complex and daunting task, because a
number of NSFs’ features and functions are supported by multi-
ple security vendors and open-source technologies. Hence there
is a need for a framework that integrates and translates business
requirements without the need for a deeper understanding of net-
work security. Interface to Network Security Functions (I2NSF)
Working Group (WG) of the Internet Engineering Task Force
(IETF) proposed a framework for users to control and manage
network security services that are enforced by multiple secu-
rity functions from different vendors or open-source technolo-
gies [3]. It provides businesses with an opportunity to manage
network security in a more user-friendly and cost-effective way.

The I2NSF WG aims to provide a set of software interfaces
and relevant data models based on YANG [4] to manage NSFs’
aspects in an accessible manner for the users. To manage the
NSFs, the user has the ability to specify rules, query, and monitor

1545-5971 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 27,2024 at 01:59:14 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0009-9506-136X
https://orcid.org/0000-0001-8490-758X
https://orcid.org/0009-0007-1131-1452
https://orcid.org/0009-0003-7506-3954
mailto:patricklink@skku.edu
mailto:jin.hyuk@skku.edu
mailto:pauljeong@skku.edu
mailto:jeonghyeon12@skku.edu

LINGGA et al.: SPT: SECURITY POLICY TRANSLATOR FOR NETWORK SECURITY FUNCTIONS IN CLOUD-BASED SECURITY SERVICES 5157

NSFs. In order to simplify the rule-set specification for the
users, I2NSF provides two configuration interfaces and data
models, which are used to construct and deliver a high-level
security policy and a low-level security policy. A high-level
security policy is a comprehensible and less-detailed set of rules
expressed directly by an I2NSF User. A low-level security policy
is a detailed rule set with specific configuration information that
is used by the NSFs to provide network security services.

But in the practical aspect, the I2NSF Framework needs an
automated translator that translates the user’s high-level security
policy accurately and consistently, eliminating the possibility of
misinterpretation or oversight. In real-world scenarios, networks
are becoming increasingly complex, especially in large-scale
networks where numerous security policies are in place. An
automated translator plays an important role in simplifying this
complexity and enhancing the efficiency of network security
management. It helps the maintenance of a robust security
posture and ensures that the NSFs work as intended, adhering
to the specified high-level security policy.

First, automation in finding mappings between high-level
security policies and low-level security policies significantly
reduces the burden on users. In practical terms, this means that
network administrators do not need to delve into the intricate
details of every security rule. Instead, they can express their
security requirements at a higher level of abstraction, making
the entire process more user-friendly. This simplification is
especially relevant in large-scale networks where managing
numerous security policies can be overwhelming.

Second, optimizing algorithms for NSF provisioning through
automation ensures the efficient utilization of network resources.
In real-world scenarios, networks often operate under con-
straints such as limited bandwidth and computational power.
The optimizing algorithms help the allocation of these resources
fairly based on the translated security policies. Thus, this op-
timization is essential for ensuring that security services are
delivered promptly without compromising the overall network
performance.

Therefore, in this paper, we proposed a Security Policy Trans-
lator (SPT) to simplify the management of NSFs to offer tangible
benefits for maintaining secure and efficient networks. The main
contributions of this paper for the Security Policy Translator
(SPT) from a high-level security policy to a low-level security
policy are as follows:
� An automatic mapper between the high-level and low-level

YANG data models: SPT handles the automatic mapping
of the two YANG data models, providing model mapping
suggestions. Its implementation leverages the design simi-
larity of the high-level and low-level YANG data models to
find the accurate mapping between the two models based
on the Zhang-Shasha algorithm [5]. The proposed mapper
significantly reduces human involvement in the translation
process through dynamic mapping of the elements (see
Section IV-A).

� A Deterministic Finite Automaton (DFA)-based security
policy extraction: SPT constructs a DFA from a high-level
YANG data model to precisely extract and validate the user
security policies. In real-world scenarios, the data models

often need to be adjusted or extended to respond to chang-
ing threats and compliance requirements. This DFA allows
the flexibility to manipulate the YANG data model without
the need for manual interruption (see Section IV-B).

� An optimized NSFs selection: SPT selects a set of NSFs
that can automatically deliver security services requested
by the I2NSF User without any knowledge of the network
architecture. The optimization of security service imple-
mentations is highly valuable in real-world networks that
are very dynamic and diverse (see Section IV-C).

� An evaluation of the proposed approaches: SPT is eval-
uated by measuring different performance indicators for
each proposed component in the SPT. It is evaluated against
a number of parameters to find out the potential of the
proposed approach for the translation of security policies.
SPT’s evaluation process ensures that it can be contin-
uously improved to meet the evolving challenges in the
future (see Section V).

The rest of this article is organized as follows. In Section II,
related work is summarized along with analysis. Section III dis-
cusses the framework and a target scenario used to formulate the
problem. Section IV describes in detail the proposed approach
for translating a high-level security policy to the corresponding
low-level security policy. In Section V, we evaluate our proposed
SPT on its components using a variety of evaluation methods. Fi-
nally, Section VI concludes this paper along with the discussion
of future research.

II. RELATED WORK

The number of devices and networks utilizing cloud technol-
ogy increases, making traditional manual methods of managing
and configuring policies on networks gradually more difficult.
As a result, Intent-Based Networking (IBN) technology is gain-
ing prominence as a way to easily manage networks based on a
user’s intent.

However, natural language expressions of the intent cannot
be used directly to configure networks, hence intent translation
is required. Therefore, the abstract intent must be translated
into low-level network policies that network devices can un-
derstand, and this technology is essential in IBN [6]. Research
is actively conducted on translating an intent expressed in a
natural language into network policies based on Natural Lan-
guage Processing (NLP) to reflect an abstract user intent in the
network.

In addition, demand for IBN services in the field of cloud
network security is increasing, and research in this area is also
actively conducted. The IETF proposed NETCONF to manage
various heterogeneous network devices based on user intent,
using YANG [4] for data modeling. In [3], a standard has
been proposed for managing and controlling various network
security functions (called NSF) created by different vendors
in a Software-Defined Network (SDN) cloud environment. To
manage heterogeneous IBN-based network devices in the I2NSF
framework, it is essential to translate a high-level security policy
(i.e., a user’s intent) into the corresponding low-level security
policy.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 27,2024 at 01:59:14 UTC from IEEE Xplore. Restrictions apply.

5158 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 6, NOVEMBER/DECEMBER 2024

Fig. 1. I2NSF framework.

The IBCS framework [7] has been proposed for the efficient
management of heterogeneous NSFs used to mitigate various
security issues that arise in intent-based cloud service environ-
ments and to process a user security intent. The authors translate
high-level security policies received from users into low-level
security policies that NSFs with the corresponding capabilities
can understand to provision the corresponding security services
by using a security translator within a security controller. In [7],
the authors used a semi-automatic mapping method. Also, the
NSFs selection is done without considering the optimal selec-
tion.

In [8], network slicing was implemented using IBN in a 5G
environment. The user’s intent related to network slicing was an
input in Graphical User Interface (GUI) as a template, and the
input high-level policy related to network slicing was mapped
into the required format for configuration using a knowledge-
based Policy Store. This method also went through a policy
translation process that involves a one-to-one matching of, rather
than a separately calculated algorithm.

However, in our paper, we have added a data model mapper
with Zhang-Shasha algorithm to calculate the Tree Edit Distance
between the high-level security policy YANG data model and
the low-level security policy YANG data model. In addition,
we have implemented an optimal policy provisioning which
can select the appropriate NSFs that can provide the required
security services. In this way, we can achieve the conversion of
a high-level security policy to a low-level security policy and
automatically select the optimal NSF(s).

III. PROBLEM FORMULATION

Interface to Network Security Functions (I2NSF) Working
Group (WG) of Internet Engineering Task Force (IETF) pro-
posed a framework for users to control and manage NSFs by
specifying rule sets. Fig. 1 illustrates the architecture of the

I2NSF Framework [3]. It consists of four components and three
interfaces. The components of the I2NSF Framework are:
� I2NSF User: A user of the I2NSF Framework that specifies

the rule-sets for the NSFs to configure the security services.
The rule sets are served as high-level security policies, i.e.,
configuration information that is easy for the non-security
expert to understand.

� Security Controller: An application that controls and man-
ages the NSFs through specific rule-sets created by I2NSF
Users. It is also responsible for translating the high-level
security policies to the corresponding low-level security
policies to activate the appropriate NSFs.

� Developer’s Management System (DMS): A vendor’s sys-
tem that provides NSFs for virtualized security services. It
registers the available NSFs and their capabilities with the
Security Controller.

� Network Security Functions: Virtualized network instances
that detect and mitigate threats to ensure integrity, confi-
dentiality, or safe operation of network communications.
It accepts low-level security policies from the Security
Controller to provide security services.

I2NSF WG connects the components in the I2NSF Frame-
work with standardized interfaces. The interfaces are designed
with various YANG [4] data models and implemented using
either NETCONF [9] or RESTCONF [10]. The I2NSF interfaces
are as follows:
� Consumer-Facing Interface (CFI): An interface for deliv-

ering high-level security policies from the I2NSF User to
the Security Controller. The CFI YANG data model [11] is
designed to resemble a human natural language as closely
as possible.

� Registration Interface (RI): An interface for registering
capabilities of NSFs with the Security Controller. The
RI YANG data model [12] is designed so that the DMS
can register the capabilities of the NSFs with the Security
Controller and also the Security Controller can query a new

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 27,2024 at 01:59:14 UTC from IEEE Xplore. Restrictions apply.

LINGGA et al.: SPT: SECURITY POLICY TRANSLATOR FOR NETWORK SECURITY FUNCTIONS IN CLOUD-BASED SECURITY SERVICES 5159

NSF with specific capabilities that can provide security
services.

� NSF-Facing Interface (NFI): An interface that provides
NSFs with translated low-level security policies. The NFI
YANG data model [13] is intended to provide security
policy configuration for the NSFs that can be used to deploy
the requested security services, e.g., access control lists.

The I2NSF Framework provides an automated system to
enable NSFs for high-level instructions from a user. In order
to enable the NSFs to follow the high-level instructions, a
security policy translator (called SPT) in the Security Controller
is required. It must provide an accurate translation for the target
NSFs in order to protect a target network efficiently, assuming
that a user properly provides the correct configuration. An
inaccurate translation will cause gaps in the protection for the
network.

A target scenario is the translation of high-level security
policies into the corresponding low-level security policies in
a company. Since the main purpose is to provide users with an
easy and understandable way to configure NSFs, the translator
must automatically and accurately translate the given high-level
security policy into the corresponding low-level security policy.
The translator must also determine the correct NSF(s) that can
provide the requested security service in accordance with the
given security policy.

Fig. 2 illustrates an example scenario, in which a high-level
security policy is translated to the corresponding low-level secu-
rity policies based on the available NSFs. In Fig. 2(a), the I2NSF
User (e.g., a network administrator) provides a high-level secu-
rity policy without any knowledge of the network and available
NSFs. This security policy is equivalent to “All employ-
ees are prohibited from accessing unautho-
rized social-media websites on company de-
vices” in English.

Fig. 2(b) shows the results of the translation. Since the NSFs
are unable to process employees and social-media, they
must be translated to the subnet address (e.g.,192.0.2.0/24)
and the hostname URL (e.g., www.facebook.com and
www.instagram.com), respectively. The elements in the
XML file of Fig. 2(a) must also be converted into a structure that
is understandable to the NSFs. The Security Controller must also
ensure that the policies are provisioned to the appropriate NSFs
that can actually perform the security policy. In this particular
scenario, a Firewall is used to verify the packets that have the
IP addresses of the employees with TCP packets through
a standard HTTPS port. If a packet meets this condition, the
Firewall will forward it to the URL Filtering to block it, which
tries to access social-media. Next section explains the
proposed Security Policy Translator to handle this scenario.

IV. SECURITY POLICY TRANSLATOR

In this section, the proposed Security Policy Translator (SPT)
for the I2NSF framework is explained. Fig. 3 shows the proposed
SPT architecture. It consists of four main components and one
supporting component. A brief explanation of the components
is as follows:

Fig. 2. Example of a translated security policy in XML.

1) Data Model Mapper: Its task is to map the high-level
elements to the corresponding low-level elements. The
mapping is performed automatically by the comparison
of the elements in the high-level and low-level YANG
data models using the Zhang-Shasha Algorithm [5]. This
component is used when initializing SPT and when up-
dating one or two of the YANG data models. The results

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 27,2024 at 01:59:14 UTC from IEEE Xplore. Restrictions apply.

5160 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 6, NOVEMBER/DECEMBER 2024

Fig. 3. Architecture of the security policy translator.

are saved in the NSF database for use in the conversion
process.

2) Data Extractor: It verifies the high-level security policy
provided by the I2NSF User and extracts the high-level
data paired with the high-level elements. This component
is built in accordance with the concept of the Deterministic
Finite Automaton (DFA).

3) Data Converter: It is responsible for converting the ex-
tracted high-level contents/elements to the correspond-
ing low-level contents/elements. It also provides policy
provisioning, i.e., selects the NSF(s) that can provide the
requested security service according to their capabilities.
The conversion is performed based on the information
saved in the NSF database.

4) Policy Generator: It is in charge of creating the low-level
security policy in an XML/JSON form to be delivered to
the selected NSF(s) for the high-level security policy.

5) NSF Database: It supports the SPT to collect and distribute
the necessary information to the Data Converter. It holds
the endpoint data (e.g., user identification and end devices’
IP addresses), NSFs’ capabilities, and a mapping model
from the Data Model Mapper. The NSF Database must be
secured and well encrypted as it contains private informa-
tion and network details that may reveal the vulnerabilities

Algorithm 1: Data Model Mapper Algorithm.
1: function Map_Data_ModelH,L � H is the CFI YANG

data model and L is the NFI YANG data model.
2: ListH ←Linear_List(H) � Break H into a Linear

List.
3: ListL ←Linear_List(L) � Break L into a Linear List.
4: for high in ListH do
5: for low in ListL do � Loop through all

combinations.
6: treeDist[low]← ZSS(high, low) � Calculate

tree edit distance with Zhang-Shasha (ZSS)
algorithm.

7: end for
8: result[high]← Keys of min(treeDist) � The

mapping results are the lowest tree edit distance.
9: end for

10: returnresult
11: end Function

of the network. The security and implementation of the
NSF Database are out of the scope of this paper as the
primary emphasis is put on the translation of security
policies.

A. Data Model Mapper

In the I2NSF framework, an I2NSF User delivers the high-
level security policy encoded in either XML or JSON format
with the NETCONF or RESTCONF protocol. The high-level
security policy follows the data model defined in the Consumer-
Facing Interface YANG data model [11]. Each of the elements
in the data model is used to provide different services. In order
to correctly translate the high-level security policy into the
corresponding low-level security policy, it is crucial to map
each high-level element to at least one corresponding low-level
element.

The Data Model Mapper is used to automatically generate data
model mapping information, i.e., the mapping of each element
between the high-level and low-level YANG data models. With
the data model mapping information, this component is used in
the initial phase of the SPT. It is also used when at least one of
the YANG data models is updated or extended. Next, the result
is saved in the NSF Database for the actual translation process.

The proposed Data Model Mapper shown in Algorithm 1 is
specifically designed to work for the I2NSF Framework, with
the process illustrated in Fig. 4. In the I2NSF Framework, the
high-level and low-level YANG data models are designed to
have similar labels for the elements with similar semantics, e.g.,
source in the high-level YANG data model and source-
ipv4-network in the low-level YANG data model. In the
case where an element of the high-level YANG data model and
another element of the low-level YANG data model have similar
labels, but have different semantic meanings, the context of these
elements should be considered. But in the case of the I2NSF
Framework, the I2NSF data models are designed such that each
pair of two labels with similar names on both YANG data models

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 27,2024 at 01:59:14 UTC from IEEE Xplore. Restrictions apply.

LINGGA et al.: SPT: SECURITY POLICY TRANSLATOR FOR NETWORK SECURITY FUNCTIONS IN CLOUD-BASED SECURITY SERVICES 5161

Fig. 4. Process of data model mapper.

has the same semantics properly. Hence, a text-based similarity
can work well without considering the semantics within the
I2NSF environment.

Moreover, it is worth noting that both the high-level and
low-level YANG data models are engineered with the con-
sideration of low cardinality. In the realm of data modeling,
cardinality refers to the number of elements in a set. Consid-
ering the cardinality of these models enables a solution that
is inherently efficient and frugal. During the process of data
model mapping, the mapper can focus on matching semantics
based on labels without being overly burdened by a vast array
of elements. Hence, by leveraging these design principles, the
Data Model Mapper is designed by taking advantage of the
nomenclature similarity between the high-level and low-level
YANG data models to automatically generate the data model
mapping information.

The algorithm works with the high-level and low-level YANG
data models as inputs. The YANG data models can be expressed
as tree data structures. Then both the data models are split into
separate linear lists, of which each consists of one leaf and its
parent until the root of the tree. Next, the tree edit distance from
each linear list of the high-level YANG data model to each linear
list of the low-level YANG data model is computed. The tree
edit distance can be calculated with the Zhang-Shasha (ZSS)
algorithm, which calculates the minimum number of operations
that can be done to make two trees similar. In this operation,
the labels (e.g., condition and source-ipv4-network
in Fig. 2) of the elements are used to determine the distance. The
operations are as follows:
� Insert: When there are missing elements, it adds the ele-

ments.

� Delete: When there are excessive elements, it removes the
elements.

� Change: When the elements are equal, it modifies the labels
of the elements.

The insert and delete operations are calculated by the number
of characters of the labels to be added or removed, respectively.
To calculate the change operation, a distance algorithm is needed
as follows. Considering the close similarity of words for the ex-
act mapping in the design of the high-level and low-level YANG
data models, the proposed approach is the Cosine Similarity
algorithm [14].

Cosine Similarity measures two non-zero vectors which are
used to measure the similarity between strings. To obtain the vec-
tor value of the elements, count-based vectorization is used [15]
as the vocabularies are limited to the CFI and NFI YANG data
models. The equation to calculate the string similarity is as
follows:

similarity(h, l) =
h.l

||h||.||l||

=

∑n
i=1 hili√∑n

i=1 h
2
i

√∑n
i=1 l

2
i

, (1)

where
� h: the label of the high-level element, and
� l: the label of the low-level element.
The equation’s result is a similarity index of the two compared

elements from 0 to 1, where 0 indicates no similarity and 1
indicates the exact same words. To modify it as a distance, the
following equation is used:

dist(h, l) = (1− similarity(h, l))× |h|. (2)

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 27,2024 at 01:59:14 UTC from IEEE Xplore. Restrictions apply.

5162 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 6, NOVEMBER/DECEMBER 2024

(2) returns the result as a distance value by inversing the
similarity(h, l) and multiplying it by |h|, i.e., the length of the
high-level element’s label. The length of h is used to normalize
the values of all distances to find the lowest distance. Next, the
results of the tree edit distance calculation are used to find the
pair for each of the high-level elements. The result can have
multiple low-level elements as the pair’s partner candidates for
one high-level element. Selection of the correct element is done
by the Data Converter (see Section IV-C) as the value of the
element needs to be considered (e.g., according to the version
of IP, that is IPv4 or IPv6).

The proposed Data Model Mapper significantly reduces the
need for human involvement through its dynamic mapping that
can adapt to changes in the data models. This flexibility ensures
that even as data models evolve, the system can autonomously
adjust its data model mapping for security policy translation,
while minimizing disruptions and maintaining efficiency. While
the Data Model Mapper operates with minimal human inter-
vention, there are specific instances where human expertise
remains invaluable. For example, updating complex data models
or re-initializing the system might still need human involvement.
From the point of view of network security, this limited human
intervention ensures that the system functions with precision,
effectively aligning with the evolving demands of network se-
curity. Thus, the balance between automated adaptability and
human expertise guarantees the system’s accuracy and relevance
to network security.

B. Data Extractor

Data Extractor is an SPT component built on the concept
of DFA. Data Extractor’s purpose is to extract the data from
the high-level security policy and relay it to the Data Converter
that converts it into the data for the corresponding low-level
security policy. The high-level security policy is based on the CFI
YANG data model [11]. To extract the data, DFA can generally
be constructed as in (3). DFA follows the hierarchy of the CFI
YANG data model completely and is convenient for automatic
construction.

M = (Q,Σ, δ, q0, F), (3)

where
� Q: {Accepting,Middle, Extracting},
� Σ: A set of all clause names in the YANG data model,
� δ: A transition for each edge for each label in the YANG

data model,
� q0: The initial state, i.e., Accepting, and
� F : The final states, i.e., Accepting.
There are three types of internal states in DFA Data Extractor:

Accepting, Middle, and Extracting. Accepting state is the
initial and final state. If the DFA finishes reading the entire policy
and enters the Accepting state, the high-level security policy is
accepted and the extracted data is relayed to Data Converter. The
Middle state is used to interact with the elements that constitute
the CFI YANG data model hierarchy. The Extracting state is
located at each leaf node position in the CFI YANG data model
and the data corresponding to the leaf node field is extracted.

Algorithm 2: Data Extractor Algorithm.
1: function Extract_DataDM,P � DM is the CFI YANG

data model, and P is the high-level security policy.
2: S ← Accepting � S is for the current state.
3: Result← ∅
4: while True do
5: T ←Read_Next_Element_XPath(P)
6: if T == empty then
7: returnGrammarError � Return a Grammar

Error.
8: end if
9: S ←Get_State(DM,T)

10: if S == Extracting then
11: Result[T]← Data
12: else if S == Accepting then
13: break � Extraction finish
14: else if S == ∅ then � T mismatch with DM
15: returnGrammarError � Return a Grammar

Error.
16: end if
17: end while
18: returnResult � Return a result.
19: end Function

Algorithm 2 shows the scheme of the Data Extractor. The
objective of the algorithm is to extract every data from the
leaf and make sure that the grammar is correct. To accom-
plish this, the input must include the CFI YANG data model
and the high-level security policy. To properly extract ev-
ery data, the algorithm reads each element individually with
the Read_Next_Element_XPath(P) function. It then uses the
Get_State(DM,T) function to obtain the next state, which is
set to S as the current state, by matching the XPath of the XML
element with the CFI YANG data model element. This function
also compares items in the CFI YANG data model to the elements
in the high-level security policy. If there is a mismatch, it will
return a GrammarError because the policy does not properly
correspond to the CFI YANG data model. If the element is
properly matched with the data model, then it will return either
the Accepting, Middle, or Extracting state.

Fig. 5 illustrates the DFA transition graph constructed on the
basis of the XML example given in Fig. 2(a). When the state
is Extracting, it will save the data as a key-value pair where
the element is the key and the content is the value. If the Data
Extractor is in the Middle state, then it will continue to process
the next label. When the state returns to Accepting, then the
Data Extractor has finished extracting all data and returns the
mapping values. The result will be relayed to the Data Converter
for the next process.

With this method, I2NSF developers can conveniently man-
age the Data Extractor component because DFA can be built
automatically even if the CFI YANG data model is modified,
because the connection of each DFA node follows the hierarchy
of the YANG data model. As the data model is constantly
updated due to both the characteristics of the standardization

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 27,2024 at 01:59:14 UTC from IEEE Xplore. Restrictions apply.

LINGGA et al.: SPT: SECURITY POLICY TRANSLATOR FOR NETWORK SECURITY FUNCTIONS IN CLOUD-BASED SECURITY SERVICES 5163

Fig. 5. Data extractor based on deterministic finite automaton (DFA).

work and the changes in customer security requirements, this
proposed component design can grant data model flexibility for
the I2NSF developers through the reconstruction of the data
model mapping.

C. Data Converter

The Data Converter converts the high-level data into the
corresponding low-level data for the NSFs. The data is the
key-value pairs extracted by the Data Extractor where each key
represents an element and its corresponding value is content
(e.g., source and employees are a pair of key and value).
It is also responsible for policy provisioning, which eliminates
the need for an I2NSF User to explicitly specify the target NSFs
for a high-level security policy. Thus, this component provides
the convenience of the translation.

To perform these tasks, the Data Converter must be well-
connected to the NSF Database where the necessary information,
i.e., mapping information and NSFs’ capabilities, is stored. The
information must be saved initially before the actual translation
process. The mapping information consists of data model map-
ping information and endpoint data to convert the corresponding
element and content, respectively. The information is obtained
from the Data Model Mapper in the initial stage of the SPT,
while the endpoint data can be registered by the I2NSF User
with the NSF Database in the Security Controller via the CFI.

Fig. 6 illustrates converting and policy provisioning processes
that are done by the Data Converter for the example given in
Fig. 2. The first converting process is the conversion of elements
and contents of the high-level data. The contents are converted
into their corresponding contents based on the information from

Fig. 6. Data converter with policy provisioning.

the NSF database, e.g., employees→ 192.0.2.0/24. The
values of the converted content will affect the selection of the
element from the data model mapping information. For example,
the converted content of the element source can either be
an IPv4 address or an IPv6 address. If the content is an IPv4
address, then the selected element will be the source-ipv4-
network as it will hold an IPv4 address.

The second policy provisioning process is the provisioning to
select the appropriate NSFs for the security policy. The selection
of NSFs is based on the capabilities of the NSFs registered
with the NSF Database. The capabilities of NSFs are defined
in the I2NSF Capability YANG data model document [16] and
registered with the NSF Database via the Registration Interface.
Each low-level element is correlated to an NSF capability. The
example presented in Fig. 6 shows that three different NSFs
are registered with the NSF Database, i.e., IPv4 Firewall, IPv6
Firewall, and Web Filter. Each NSF has unique capabilities to
handle different network traffic. The IPv4 and IPv6 Firewalls
are used to filter network traffic based on the packet’s IP address
(e.g., IPv4 or IPv6 address, respectively), while the Web Filter is
used to restrict the websites that a client can use. Therefore, the
policy provisioning function is designed to satisfy the following
requirements:

1) Each element must be regulated by an NSF: The most
important requirement is to fully comply with the I2NSF
User’s request. If any of the elements cannot be supported
by the registered NSFs, the Security Controller must re-
quest a new NSF with the missing capabilities to the DMS.
If the DMS is unable to provide the NSFs for any reason,
then the Data Converter will generate an error message for
the I2NSF User.

2) The selected NSFs should be optimal: To optimize re-
source and network usage, the number of NSFs involved in
security policy regulation should be minimized. The NSFs
that are able to cover more elements should be selected.

3) The selection time should be short: Having a fast translator
for the swift deployment of NSF as the security of the

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 27,2024 at 01:59:14 UTC from IEEE Xplore. Restrictions apply.

5164 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 6, NOVEMBER/DECEMBER 2024

Algorithm 3: Policy Provisioning Algorithm.

1: function Policy_Provisioning(convertedData, S) �
convertedData contains the results of the conversion.
� S is the set of all NSFs that have at least one
capability, which constructs U .

2: U ←Find_Universe(convertedData) � U is the
Universe, which contains the capabilities required.

3: nsf ←Find_NSFs(U, S) � Find_NSFs(U, S) finds a
set of NSFs (denoted as nsf) to encompass the
elements (i.e., capabilities) of U .

4: Results← ∅
5: for key, val in convertedData do
6: for i in len(nsf) do
7: if nsf [i] has the capability for key then
8: if (′′action′′ in key) and (i < len(nsf)− 1)

then � The condition to activate Service
Function Chaining (SFC).

9: Results[nsf [i]][key]← nsf [i+ 1]
10: else
11: Results[nsf [i]][key]← val
12: end if
13: end if
14: end for
15: end for
16: returnResults
17: end Function

network is important. A slow translator may cause serious
losses for the users.

With these requirements, the policy provisioning problem can
be defined as a Set-Cover Problem [17] to find a minimum
number of NSFs that can include all of the required elements.
The following definitions are used for policy provisioning:

Definition IV.1: Let U be Universe set (i.e., a policy-
enforcing capability set) having essential capabilities (U =
{c1, c2, . . ., cn}) required for a security policy. For exam-
ple, in Fig. 6, the required capabilities for a given high-
level security policy are IPv4 source-address (c1), TCP
source-port (c2), the URL (c3) verification, and packet denial
capability (c4).

Definition IV.2: Let Si be a Subset (i.e., an NSF Capability
set) having the capabilities of an NSF from the NSF database.
For example, Fig. 6 shows the NSF S1 with IPv4 source-address
(c1), TCP source-port (c2), and packet denial capability (c4), i.e.,
S1 = {c1, c2, c4}. Where NSF with a corresponding subset (Si)
has the coverage of capabilities for the Universe set U .

For this optimization, we propose a Policy Provisioning
algorithm as shown in Algorithm 3. The algorithm takes inputs
of convertedData and S, where ConvertedData is the result
of the previous conversion process and S is the set of all NSFs
that have at least one capability that is an element in the set U .
In line 2, the Find_Universe(convertedData) function takes
convertedData to find the necessary capabilities as the Uni-
verse based on the capabilities defined in the I2NSF Capabilities
YANG data model [16].

Algorithm 4: Set-Cover Algorithm.
1: function Set_CoverU, S � U is the Universe, S is the

set of subsets.
2: X ← U � X stores the uncovered elements.
3: C ← ∅� C stores the subsets and their elements of the

cover.
4: while X �= ∅ do
5: Select Si from S such that Si covers the most

elements in X
6: X ← X − Si[elements]
7: C[Si]← Si[elements]
8: S ← S − Si

9: end while
10: returnC
11: end Function

In line 3, a subfunction called Find_nsfs(U, S) is called, taking
both the universe setU and the set of subsetsSi as input to find an
optimal set of NSF(s) that can completely operate the requested
security policy. In this paper, two approaches are used and
compared to discover the best method that can find an optimal
set of NSFs, i.e., Greedy Algorithm and Linear Programming.

1) Greedy Algorithm: As shown in Algorithm 4, the algo-
rithm iteratively selects subsets (Si) from S that cover
elements in U [18]. Each loop selects a subset Si that
covers the most elements in U until every element in U
has been covered.

2) Linear Programming: It maximizes or minimizes a linear
objective function with linear constraints [18]. The equa-
tion to find an optimal solution is as follows:

minimize

n∑

j=1

cjxj , (4)

subject to
n∑

j=1

aijxj ≥ bi, for i = 1, . . .,m, (5)

xj ≥ 0, for j = 1, . . .,m.

In lines 6 - 16 of Algorithm 3, the convertedData is looped
in order to properly deliver the appropriate security policies to
each NSF. In line 7, the function checks whether the current
NSF has the capability for the current key. If it does, then in
line 8, the function ensures that the security policies are able to
activate the Service Function Chaining (SFC) [19] by checking
whether the key includes the word ”action” and whether the
current index is the last NSF. If so, the value for the key in the
results dictionary is set to the next NSF in the set. But if one or
more conditions are false, the value is set to the original value
from the convertedData input. When all key/value pairs are
processed, the results dictionary is returned. This result will
be used in the next process, i.e., Policy Generator, which is
explained in Section IV-D.

The choice of NSFs is critical to timing the security of
the network. The time complexity of Algorithm 3 can be
expressed asO(|convertedData||S|+ T (Find_nsfs(U, S)),

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 27,2024 at 01:59:14 UTC from IEEE Xplore. Restrictions apply.

LINGGA et al.: SPT: SECURITY POLICY TRANSLATOR FOR NETWORK SECURITY FUNCTIONS IN CLOUD-BASED SECURITY SERVICES 5165

Fig. 7. Policy generator.

where T (Find_nsfs(U, S)) is the time complexity of the
function Find_nsfs(U, S). At worst, the Find_nsfs(U, S) func-
tion, which uses either Greedy Algorithm or Linear Pro-
gramming approach, will have the time complexity of
O((|convertedData||S|)3). Overall, the time complexity for
Policy Provisioning algorithm is O(|convertedData||S|+
(|convertedData||S|)3). However, as the number of elements
and NSFs should remain within a reasonable bound, the du-
ration of selecting the most suitable NSFS should also remain
reasonable.

D. Policy Generator

The Policy Generator is the final process to completely trans-
lated the user’s security policy for the NSFs. The objective of this
component is to generate the corresponding low-level security
policies for the NSFs based on the converted data received from
the Data Converter. The low-level security policies must be
separated for each NSFs in order to implement it. The low-level
security policies are delivered in XML or JSON format with
either NETCONF or RESTCONF protocol, and the low-level
security policies conform to the NFI YANG data model [13].

Fig. 7 shows how the Policy Generator produces the low-level
security policy. PyangBind [20] is used to automatically generate
low-level security policies and ensure that they comply with
the YANG data model. Pyangbind allows YANG data models
to be used as a basis for defining Python classes, with each
YANG data element being represented as a class attribute. This
allows developers to use the familiar syntax and structure of
Python classes to interact with data modeled in YANG, making
it easier to write software that works with a YANG data model.
Pyangbind is built on top of the Pyang [21] tool, which is
a Python library for validating and manipulating YANG data
models. Pyangbind uses Pyang to parse and validate YANG
data models, and also generate Python classes based on the
data model. It also includes a number of additional features and
utilities for working with the generated Python classes, such
as the ability to serialize and deserialize data between different
formats (e.g., XML and JSON). With Pyangbind, any changes

Algorithm 5: Policy Generator Algorithm.
1: function GeneratorP � P is the result of the

Policy_Provisioning(convertedData).
2: nfi← ietf_i2nsf_nsf_facing_interface() �

ietf_i2nsf_nsf_facing_interface is the Python
Class Generated by PyangBind.

3: for nsf, data in P do
4: if nsf is null then
5: return”Error, NSF not found.”
6: end if
7: for k, v in data do
8: attr ←Get_Attr(nfi, k)
9: Set_Attr(attr, v)

10: end for
11: result[nsf]← pybind(nfi)
12: end for
13: returnresult
14: end Function

made to the YANG data model can be easily applied to the
translator to generate the low-level security policy.

Algorithm 5 shows the generation of security policies for
each provisioned NSFs by utilizing PyangBind. The function
takes a single argument, P , which is the result of the function
Policy_Provisioning(convertedData) in Algorithm 3. In line
2, a Python class called ietf_i2nsf_nsf_facing_interface
is instantiated, which is generated by PyangBind, and is assigned
as an object callednfi. Thenfi object is used to manipulate data
that is expressed in the NFI Yang data model. Then, the function
enters a loop that iterates over each item inP . For each item,nsf
is the key and data is the value. In line 4, the function checks if
nsf is null or not. If so, the function returns a string indicating
that the NSF was not found. If nsf is not null, the function
enters another loop in line 7 that iterates over each key-value
pair in the data. For each key-value pair, the function calls the
Get_Attr(nfi, k) function to retrieve the Python Class attribute
of k from thenfi, and saves it as attr. In line 9, the function calls
the Set_Attr(attr, v) function to set the Python Class attribute
of k with v as the value. After processing all of the key-value
pairs, the function calls the pybind(nfi) function to produce the
low-level security policy in an XML or JSON format [20] and
stores the result as a dictionary, using nsf as the key.

V. PERFORMANCE EVALUATION

In this section, the performance of SPT is evaluated to assess
the effectiveness and efficiency of the translator. A set of indi-
cators and parameters is established to measure and compare
the performance of SPT against its stated goals and objectives.
We analyzed every proposed component using a variety of
methods, gathering a wealth of information about the program’s
performance and identifying areas for improvement. Table I
shows the specification and environment used to evaluate the
performance of SPT.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 27,2024 at 01:59:14 UTC from IEEE Xplore. Restrictions apply.

5166 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 6, NOVEMBER/DECEMBER 2024

TABLE I
TEST CONFIGURATION FOR SPT

A. Data Model Mapper

The Data Model Mapper proposed in this paper is a specific
method that can be used to map the elements between the CFI
YANG data model and the NFI YANG data model. The pro-
posed dynamic method leverages the design similarity between
the two YANG data models to accurately suggest a mapping
model between each pair of elements in the data models. Two
methods are compared to find the effectiveness of the Data
Model Mapper, i.e., label-based mapping and semantic-based
mapping. Label-based mapping only utilizes the labels of the
elements and is calculated with Cosine Similarity explained in
Section IV-A. Semantic-based mapping considers the semantics
of the elements to find the mapping information utilizing Natural
Language Processing (NLP) to find the semantic similarity. In
the experiment, Universal Sentence Encoder [22] is used within
the spaCy library [23] which allows Docs, Spans, and Tokens
to be embedded directly from the Universal Sentence Encoder
family.

We prepare extensions of the CFI YANG data model to find
the effect of the extension on the accuracy of the proposed
mapper. The extensions are created based on missing details
in CFI elements compared to the NFI elements, i.e., detailed
information of a packet header condition such as packet length
and TTL information.

Fig. 8 presents the performance of the Data Model Mapper,
emphasizing the distinction between the label-based mapping
and the semantic-based mapping in mapping the elements be-
tween the CFI YANG data model and the NFI YANG data
model. As shown in Fig. 8(a), the label-based mapping can
map the elements with 100% accuracy for 41 elements but
can map the elements with 89% accuracy for 50 elements.
Thus, as the number of elements increases, the accuracy of the
label-based mapping decreases gradually. On the other hand,
the semantic-based mapping has lower accuracy from 94% to
83% over the number of elements from 41 to 50 than the
label-based mapping. From these results, it is seen that the
label-based mapping approach outperforms the semantics-based
mapping. These results come from the nature of the design
of the CFI and NFI YANG data models where the labels of
the elements have high similarity. Furthermore, this outcome
can be attributed to several factors rooted in both semantic
analysis and complexity associated with mapping intricate data
models.

Fig. 8. Impact of YANG data model extension to data model mapper.

Another issue with the semantic-based mapping with NLP is
the execution time. In the field of network security, time is very
critical. As presented in Fig. 8(b), the semantic-based mapping
takes up to around 156 seconds with 50 extended elements
in the data model, while the label-based mapping takes up to
13 seconds with 50 extended elements. This shows that the
semantic-based mapping may cause a problem for the prompt
defense of the network since the longer it takes to update the
system, the longer the vulnerability window for the network is.
This is because the semantic-based mapping delves deeply into
the meaning and context of words, phrases, and sentences which
will take a longer time to process each element.

Therefore, it is shown that the proposed Data Model Mapper
using the label-based mapping approach can effectively perform
the mapping between the CFI and NFI with better accuracy and
shorter execution time in network security services.

B. Data Extractor

The proposed extraction method is based on the concept of
DFA. It constructs the semantics that must be followed based on

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 27,2024 at 01:59:14 UTC from IEEE Xplore. Restrictions apply.

LINGGA et al.: SPT: SECURITY POLICY TRANSLATOR FOR NETWORK SECURITY FUNCTIONS IN CLOUD-BASED SECURITY SERVICES 5167

Fig. 9. Data Extractor Performance with and without YANG data model
verification.

the YANG data model. This process verifies whether a high-level
policy is acceptable or not according to the given CFI YANG data
model. The proposed component guarantees complete extraction
with 100% accuracy. To assess the performance, we compare the
time it takes to extract the high-level security policy with and
without YANG data model verification. A YANG data model
verification validates the given high-level security policy to
check whether it conforms to the CFI YANG data model or
not. We also examine the impact of the number of elements to
be extracted.

To evaluate the Data Extractor, we compile 100 high-level
security policies for each element quantity (from 4 elements to
12 elements). Fig. 9 displays the performance of the proposed
Data Extractor. It shows that the YANG data model verification
increases the time of extraction by around 30% of the extraction
process without YANG data model verification. However, since
YANG data model verification is necessary to guarantee that the
security policy is correctly deployed, it is unavoidable to spend
more time on the extraction process. The number of elements
also increases the operational time of the Data Extractor as
more elements of the high-level security policy are used. The
duration slowly increases from 0.2 milliseconds for 4 elements
and increases to 0.4 milliseconds for 12 elements. The increasing
number of elements does not fully impact the time duration of
extraction, and the time duration is negligible to humans.

This performance evaluation shows that the Data Extractor
can be used to perform the extraction with negligible time
duration for the I2NSF system.

C. Data Converter

The Data Converter involves two processes, i.e., conver-
sion and provisioning. The conversion process is handled by
exchanging information with the NSF database. We omit the
performance of conversion as it shows the performance of the
NSF database rather than the performance of the translation. For
the provisioning process, the evaluation setting is as follows:
� Performance Metrics: (i) Average Time, (ii) Solution Qual-

ity, and (iii) Memory Usage are used as metrics for the
performance.

� Approaches: To find the best approach for our optimization,
we tested (i) Linear Programming and (ii) Greedy Algo-
rithm as optimization techniques. We use Combination to
find the guaranteed optimal solution as the baseline.

� Parameters: For the performance, the impact of the Num-
ber of NSFs is investigated. The NSFs have different sets
of capabilities to verify the integrity of the solution.

Fig. 10 displays the performance of the proposed Policy
Provisioning. Fig. 10(a) shows the average time needed to
find the solution. All three approaches present a longer time
duration when the number of NSFs involved increases. The
Greedy Algorithm and Linear Programming approaches show
a slow increment when the number of NSFs increases. The
Combination method shows exponential growth as it has to
calculate every possible combination and find the best solution
that can provide the security service. The Greedy Algorithm
exhibits the shortest average execution time compared to the
other approaches, while the Linear Programming is slower than
the Combination if the number of NSFs is lower than 14.

Fig. 10(b) presents the solution quality generated by the three
approaches. The Combination approach will always provide the
best optimal solution as it calculates every possibility that can
be used to find the solution. Similarly, the Linear Programming
approach is also able to find an optimal solution for 100% over
time for any security policy even with the increasing number of
NSFs. The Greedy Algorithm approach shows a lower solution
quality than the Linear Programming and the Combination. The
Greedy Algorithm approach cannot perfectly provide the most
optimal solution for every security policy. When there are 5
NSFs, it can provide an optimal solution for 95% over time, but
the percentage decreases as the number of NSFs increases.

Fig. 10(c) shows the memory usage of each approach. The
Combination approach exhibits a high memory usage when there
are more than 10 NSFs involved. Whereas the memory usages
of the Greedy Algorithm and Linear Programming approaches
show parallel results which are lower than the Combination
approach. The Linear Programming shows slightly higher mem-
ory usage than the Greedy Algorithm approach. Both of the
approaches increase at the same rate with the increasing number
of NSFs.

Overall, to find an optimal solution for Policy Provisioning,
the best approach is to use the Linear Programming as it can
provide the most balanced solution with negligible operational
time and low memory usage even with a larger number of NSFs,
even though the Greedy Algorithm approach is able to quickly
find a solution.

D. Policy Generator

The Policy Generator utilizes PyangBind to generate the
low-level security policies either in an XML or JSON format.
To evaluate the performance difference between the generated
security policies in an XML and JSON format, we use the
converted high-level security policies and measure the average
time it takes to generate the low-level security in XML and JSON
format. We also measure the impact of elements’ quantity on the
performance of the Policy Generator.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 27,2024 at 01:59:14 UTC from IEEE Xplore. Restrictions apply.

5168 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 6, NOVEMBER/DECEMBER 2024

Fig. 10. Impact of NSFs’ quantity on policy provisioning performance.

Fig. 11. Policy generator performance.

Fig. 11 displays the average time for generating the low-level
security policies in an XML and JSON format. Based on the
result, both of these formats are affected by the addition of
elements, with the average time increasing steadily with a larger
number of elements. From the figure, it is clear that the Policy
Generator can perform better when generating security policies
in a JSON format. The average time for the JSON format starts
from around 0.5 milliseconds to 0.7 milliseconds for 4 elements
to 14 elements, while the average time for the XML format is
around 0.7 milliseconds to 1 ms. Overall, the performance of the
Policy Generator in an XML and JSON format is acceptable to
generate low-level security policies as it is negligible.

E. Discussion

The proposed Security Policy Translator is used to translate
a high-level security policy to the corresponding lower-level
security policy in an I2NSF Framework. The proposed method
is a specific approach that is designed to work specifically for
the I2NSF Framework to achieve accurate automatic translation.
This approach effectively bridges the gap between abstract high-
level policy requirements and the complexities associated with
low-level device configurations. Automated translations mini-
mize the risk of misconfigurations, which are often a significant
source of network vulnerabilities. Consequently, the network
becomes more robust and less susceptible to security breaches,
thereby bolstering overall system reliability.

In terms of the quality and accuracy of translated results, the
proposed methods designed specifically for the I2NSF Frame-
work play a pivotal role. The specificity of the method ensures
that the translations are not generic but precisely aligned with
the requirements of the I2NSF architecture. This approach en-
hances the accuracy of translations, as it takes into account the
unique features and intricacies of the framework. As a result,
the translated security policies align perfectly with the intended
configurations, which suggests that the proposed scheme can be
utilized in real-world scenarios.

Overall, the proposed Security Policy Translator is a signif-
icant upgrade designed for the I2NSF Framework. It embodies
a paradigm shift towards Network Management Automation,
which seamlessly translates abstract high-level security poli-
cies into accurate and reliable low-level device configurations.
This transformation not only ensures the network’s security
but also significantly improves its overall reliability, making
it a foundation for secure, efficient, and dependable network
infrastructures.

VI. CONCLUSION

In this article, we propose a Security Policy Translator (SPT)
for Network Security Functions (NSFs) in cloud-based security
services. We use a standardized framework developed by the
Interface to Network Security Function (I2NSF) Working Group
to control and manage network security services. The proposed
translator allows I2NSF User to protect their networks without
the need for network security knowledge by providing a high-
level security policy. The proposed translator is able to extract the
high-level security policy by constructing Deterministic Finite
Automaton (DFA) based on the standardized Consumer-Facing
Interface YANG data model. It then converts the extracted data
to a lower-level form which is done by utilizing a data model
mapper between the high-level YANG data model and the low-
level YANG data model. It also selects the optimal NSFs that
can realize the requested security policies. Finally, it generates
the low-level security policies in either XML or JSON format to
be deployed to the selected NSFs. We have evaluated SPT and
showed that it is able to perform well as an automated translator.

As future work, we will extend our SPT to support natural
language processing (NLP) to allow I2NSF User to request
security services in a more convenient way. We also want to

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 27,2024 at 01:59:14 UTC from IEEE Xplore. Restrictions apply.

LINGGA et al.: SPT: SECURITY POLICY TRANSLATOR FOR NETWORK SECURITY FUNCTIONS IN CLOUD-BASED SECURITY SERVICES 5169

extend the SPT to perform in a less specific networking area,
e.g., routing devices (e.g., BGP gateways) and 5G core networks
for better networking management.

ACKNOWLEDGMENT

Figs. 1 and 3 have been designed using images from Flati-
con.com.

REFERENCES

[1] S. Kemp, “Digital 2022: April global statshot report,” 2022.
[Online]. Available: https://datareportal.com/reports/digital-2022-april-
global-statshot

[2] Corvus, “Survey findings: SMB cyber readiness,” 2022. [Online]. Avail-
able: https://insights.corvusinsurance.com/cyber-risk-insight-index-q1--
2022/survey-findings-smb-cyber-readiness#

[3] D. Lopez, E. Lopez, L. Dunbar, J. Strassner, and R. Kumar, “Framework for
interface to network security functions,” RFC 8329, Feb. 2018. [Online].
Available: https://rfc-editor.org/rfc/rfc8329.txt

[4] M. Björklund, “The YANG 1.1 data modeling language,” RFC 7950,
Aug. 2016. [Online]. Available: https://www.rfc-editor.org/info/rfc7950

[5] K. Zhang and D. Shasha, “Simple fast algorithms for the editing distance
between trees and related problems,” SIAM J. Comput., vol. 18, pp. 1245–
1262, Dec. 1989.

[6] A. Leivadeas and M. Falkner, “A survey on intent based networking,”
IEEE Commun. Surv. Tut., vol. 25, no. 1, pp. 625–655, First Quarter 2023.

[7] J. Kim et al., “IBCS: Intent-based cloud services for security applications,”
IEEE Commun. Mag., vol. 58, no. 4, pp. 45–51, Apr. 2020.

[8] K. Abbas, T. A. Khan, M. Afaq, and W.-C. Song, “Network slice life-
cycle management for 5G mobile networks: An intent-based networking
approach,” IEEE Access, vol. 9, pp. 80128–80146, 2021.

[9] R. Enns, M. Björklund, A. Bierman, and J. Schönwälder, “Network
Configuration Protocol (NETCONF),” RFC 6241, Jun. 2011. [Online].
Available: https://www.rfc-editor.org/info/rfc6241

[10] A. Bierman, M. Björklund, and K. Watsen, “RESTCONF protocol,”
RFC 8040, Jan. 2017. [Online]. Available: https://www.rfc-editor.org/
info/rfc8040

[11] J. P. Jeong, C. Chung, T.-J. Ahn, R. Kumar, and S. Hares, “I2NSF
consumer-facing interface YANG data model,” Internet engineering
task force, internet-draft draft-ietf-i2nsf-consumer-facing-interface-dm-
31, May 2023. [Online]. Available: https://datatracker.ietf.org/doc/draft-
ietf-i2nsf-consumer-facing-interface-dm/

[12] S. Hyun, J. P. Jeong, T. Roh, S. Wi, and P. Jung-Soo, “I2NSF registration
interface YANG data model for NSF capability registration,” Internet en-
gineering task force, internet-draft draft-ietf-i2nsf-registration-interface-
dm-26, May 2023. [Online]. Available: https://datatracker.ietf.org/doc/
draft-ietf-i2nsf-registration-interface-dm/

[13] J. T. Kim, J. P. Jeong, P. Jung-Soo, S. Hares, and Q. Lin, “I2NSF network
security function-facing interface YANG data model,” Internet engineer-
ing task force, internet-draft draft-ietf-i2nsf-nsf-facing-interface-dm-29,
Jun. 2022. [Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-
i2nsf-nsf-facing-interface-dm/

[14] F. Rahutomo, T. Kitasuka, and M. Aritsugi, “Semantic cosine similarity,”
in Proc. 7th Int. Student Conf. Adv. Sci. Technol., vol. 4, no. 1, 2012,
Art. no. 1.

[15] A. Kedia and M. Rasu, Hands-on python natural language processing:
explore tools and techniques to analyze and process text with a view to
building real-world NLP applications. Packt publishing, 2020. [Online].
Available: https://books.google.co.kr/books?id=_tmbzQEACAAJ

[16] S. Hares, J. P. Jeong, J. T. Kim, R. Moskowitz, and Q. Lin, “I2NSF capa-
bility YANG data model,” Internet engineering task force, Internet-draft
draft-ietf-i2nsf-capability-data-model-32, May 2022. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-i2nsf-capability-data-model/

[17] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algo-
rithms, ser. Mit Electrical Engineering and Computer Science. Cambridge,
MA, USA: MIT Press, 2001. [Online]. Available: https://books.google.co.
id/books?id=NLngYyWFl_YC

[18] V. V. Vazirani, Approximation Algorithms. Berlin, Germany: Springer,
2010.

[19] J. M. Halpern and C. Pignataro, “Service function chaining (SFC) ar-
chitecture,” RFC 7665, Oct. 2015. [Online]. Available: https://www.rfc-
editor.org/info/rfc7665

[20] R. Shakir, “pyangbind,” 2018. [Online]. Available: https://github.com/
robshakir/pyangbind

[21] M. Bjorklund, “pyang,” 2017. [Online]. Available: https://github.com/
mbj4668/pyang

[22] D. Cer et al., “Universal sentence encoder,” 2018, arXiv: 1803.11175.
[23] M. Mensio, “Spacy - universal sentence encoder,” 2023. [Online].

Available: https://github.com/MartinoMensio/spacy-universal-sentence-
encoder

Patrick Lingga (Student Member, IEEE) received
the BS degree from Bandung Institute of Technology,
Indonesia, in 2019. He is currently working toward
the PhD degree in the Department of Electrical and
Computer Engineering with Sungkyunkwan Univer-
sity since Fall, in 2019. His PhD degree advisor
is professor Jaehoon (Paul) Jeong. His major was
Telecommunication Engineering in the Department
of Electrical Engineering and Informatics. His re-
search interests include Software-Defined Network-
ing (SDN), Network Functions Virtualization (NFV),

Intent-Based Networking (IBN), and 5 G Networks.

Jaehoon (Paul) Jeong (Member, IEEE) received the
BS degree from the Department of Information En-
gineering, Sungkyunkwan University, the MS degree
from the School of Computer Science and Engineer-
ing, Seoul National University, in Korea, in 1999 and
2001, respectively, and the PhD degree in the De-
partment of Computer Science and Engineering, the
University of Minnesota, in 2009. He is an associate
professor in the Department of Computer Science
and Engineering with Sungkyunkwan University, in
South Korea. His research areas include Internet of

Things (IoT), Network Security, Software-Defined Networking (SDN), Network
Functions Virtualization (NFV), Intent-Based Networking (IBN), 5 G Networks,
and Indoor Localization. He is a member of ACM and the IEEE Computer
Society.

Jinhyuk Yang (Student Member, IEEE) received the
MS degree from the Department of Electrical and
Computer Engineering of Sungkyunkwan University,
in August 2019. His advisor was professor Jaehoon
(Paul) Jeong. His research interests include Network
Functions Virtualization (NFV), Intent-Based Net-
working (IBN), and Natural Language Processing
(NLP).

Jeonghyeon Kim (Student Member, IEEE) received
the BS degree from Pusan National University. He is
currently working toward the PhD degree in the De-
partment of Computer Science and Engineering with
Sungkyunkwan University, South Korea since spring
2021. His PhD degree advisor is professor Jaehoon
(Paul) Jeong. His research interests include Software-
Defined Networking (SDN), Network Functions Vir-
tualization (NFV), Intent-Based Networking (IBN),
5G Networks, Cloud Native Computing, and Indoor
Localization.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 27,2024 at 01:59:14 UTC from IEEE Xplore. Restrictions apply.

https://datareportal.com/reports/digital-2022-april-global-statshot
https://datareportal.com/reports/digital-2022-april-global-statshot
https://insights.corvusinsurance.com/cyber-risk-insight-index-q1--2022/survey-findings-smb-cyber-readiness#
https://insights.corvusinsurance.com/cyber-risk-insight-index-q1--2022/survey-findings-smb-cyber-readiness#
https://rfc-editor.org/rfc/rfc8329.txt
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8040
https://datatracker.ietf.org/doc/draft-ietf-i2nsf-consumer-facing-interface-dm/
https://datatracker.ietf.org/doc/draft-ietf-i2nsf-consumer-facing-interface-dm/
https://datatracker.ietf.org/doc/draft-ietf-i2nsf-registration-interface-dm/
https://datatracker.ietf.org/doc/draft-ietf-i2nsf-registration-interface-dm/
https://datatracker.ietf.org/doc/draft-ietf-i2nsf-nsf-facing-interface-dm/
https://datatracker.ietf.org/doc/draft-ietf-i2nsf-nsf-facing-interface-dm/
https://books.google.co.kr/books?id=_tmbzQEACAAJ
https://datatracker.ietf.org/doc/draft-ietf-i2nsf-capability-data-model/
https://books.google.co.id/books{?}id$=$NLngYyWFl_YC
https://books.google.co.id/books{?}id$=$NLngYyWFl_YC
https://www.rfc-editor.org/info/rfc7665
https://www.rfc-editor.org/info/rfc7665
https://github.com/robshakir/pyangbind
https://github.com/robshakir/pyangbind
https://github.com/mbj4668/pyang
https://github.com/mbj4668/pyang
https://github.com/MartinoMensio/spacy-universal-sentence-encoder
https://github.com/MartinoMensio/spacy-universal-sentence-encoder

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

