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Abstract—Road networks are one of important surveillance areas in military scenarios. In these road networks, sensors will be

sparsely deployed (hundreds of meters apart) for the cost-effective deployment. This makes the existing localization solutions based

on the ranging ineffective. To address this issue, this paper introduces a novel approach based on the passive vehicular traffic

measurement, called Autonomous Passive Localization (APL). Our work is inspired by the fact that vehicles move along routes with a

known map. Using binary vehicle-detection time stamps, we can obtain distance estimates between any pair of sensors on roadways

to construct a virtual graph composed of sensor identifications (i.e., vertices) and distance estimates (i.e., edges). The virtual graph is

then matched with the topology of the road map, in order to identify where sensors are located on roadways. We evaluate our design

outdoors on Minnesota roadways and show that our distance estimate method works well despite traffic noises. In addition, we show

that our localization scheme is effective in a road network with 18 intersections, where we found no location matching error, even with a

maximum sensor time synchronization error of 0.07 sec and a vehicle speed deviation of 10 km/h.

Index Terms—Sensor network, passive localization, road network, binary vehicle detection, time stamp, prefiltering, graph matching.
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1 INTRODUCTION

ROAD networks are one of important infrastructures
under surveillance in military operations. For the

surveillance of these road networks, the localization of
sensors is a prerequisite, providing target positions. In the
military scenarios, it has been envisioned that for the fast
and safe deployment, unmanned aerial vehicles drop a
large number of wireless sensors into road networks around
a target area. For the localization, many solutions have been
proposed, using 1) precise range measurements (e.g., TOA
[1], TDOA [2], and AOA [3]) or 2) connectivity information
(e.g., Centroid [4], APIT [5], SeRLoc [6], and Robust Quads
[7]) between sensors for sensor localization. To cover a large
area in road networks, sensors have to be sparsely deployed
(hundreds of meters apart) to save costs. In this sparse
deployment, since sensors cannot reach each other either
through ranging devices (e.g., Ultrasound signals can only
propagate 20-30 feet) or single-hop RF connectivity, the
previous solutions become ineffective.

To address this issue, we propose an Autonomous

Passive Localization (APL) algorithm for extremely sparse

wireless sensor networks. This algorithm is built upon an

observation: Military targets normally use roadways for

maneuver; therefore, only the sensors near the road are

actually useful for surveillance. The sensors away from the

roadway can only be used for communication, since targets

are out of their sensing range. In other words, their
localization is unimportant. In such a scenario, the research
question becomes how sensors on/near a road can identify their
positions in a sparse deployment without any pairwise ranging or
connectivity information.

The high-level idea of our solution is to use vehicles on
roadways as natural events for localization. The solution
would be trivial if all sensors are equipped with sophisti-
cated vehicle identification sensing devices, because mea-
suring the distance between two sensors by multiplying
vehicles’ average speed by Time Difference on Detection
(TDOD) between two sensors corresponding to the same
vehicle is relatively easy. Obviously vehicle identification
sensors would be costly in terms of hardware, energy, and
computation. Therefore, the challenging research question
becomes how to obtain locations of the sensors, using only binary
detection results without the vehicle identification capability in
sensors. Note that vehicle identification sensors can generate
a unique signature for each vehicle type [8]. With this
signature and time stamps, the distance estimation is trivial
between sensors, so the localization is also trivial.

Our main idea is as follows: Through statistical analysis
of vehicle-detection time stamps, we can obtain distance
estimates between any pair of sensors on roadways to
construct a virtual graph composed of sensor identifications
(i.e., vertices) and distance estimates (i.e., edges). This
virtual graph is then matched with the topology of the
known road map. Thus, this unique mapping allows us to
identify where sensors are located on roadways.

Specifically, our localization scheme consists of three
phases: 1) the estimation of the distance between two
arbitrary sensors in the same road segment; 2) the
construction of the connectivity of sensors on roadways;
and 3) the identification of sensor locations through
matching the constructed connectivity of sensors with the
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graph model for the road map. Our key contributions in this
paper are as follows:

. A new architecture for autonomous passive localiza-
tion using only the binary detection of vehicles in the
road networks. Unlike previous approaches, APL is
designed specially for sparse sensor networks where
long-distance ranging is difficult, if not impossible.

. A statistical method to estimate road segment
distance between two arbitrary sensors, based on
the concept of the TDOD. For the distance estimation,
the TDOD operation uses the correlation between the
time stamps of sensors geographically close to each
other. Though the TDOD operation was first pro-
posed in our earlier work APL [9], the validity of
TDOD operation is analyzed in this paper.

. A prefiltering algorithm for selecting only robust
edge distance estimates between two arbitrary sensors
in the same road segment. Unreliable path distance
estimates are filtered out for better accuracy. The
prefiltering proposed by our earlier work APL [9]
can handle only the scenario where sensors are
deployed only at intersections, however, this paper
provides an enhanced prefiltering to handle the
scenario where sensors are deployed both at inter-
sections and in the middle of road segments.

. A graph matching algorithm for matching the
sensor’s identification with a position on the road
map of the target area. The graph matching uses the
isomorphic structure between the road network and
the sensor network.

. Considerations on practical issues, such as time
synchronization error, vehicle detection missing,
and duplicate vehicle detection.

The rest of this paper is organized as follows: In Section 2,
we summarize related work for the localization in wireless
sensor networks. Section 3 describes the problem formula-
tion for our Autonomous Passive Localization. Our APL
system design is described in Section 4. In Section 5, we
discuss practical issues that can affect our localization
scheme in practice. Section 6 evaluates our APL algorithm
in realistic settings. We conclude this paper along with
future work in Section 7.

2 RELATED WORK

Many localization schemes have previously been proposed,
and they can be categorized into three classes: 1) Range-
based localization schemes, 2) Range-free localization
schemes, and 3) Event-driven localization schemes. Range-
based schemes require costly hardware devices (e.g., ultra-
sound ranging device) to accurately estimate the distance
between nodes, along with the additional energy consump-
tion. The Time of Arrival (TOA) (e.g., GPS [1]) and Time
Difference of Arrival (TDOA) schemes (e.g., Cricket [2] and
AHLoS [10]) measure the propagation time of the signal and
estimate the distance based on the propagation speed. Since
ultrasound signals usually propagate only 20-30 feet, TDOA
is not quite suitable for sparse networks. The Angle of
Arrival (AOA) schemes [3] estimate the positions of the
nodes by sensing the direction from which a signal is

received. The Received Signal Strength Indicator (RSSI)
schemes [11], [12] use either theoretical or empirical models
to estimate the distance based on the loss of power during
signal propagation. The RSSI can use the same hardware
used for communication, but its ranging accuracy is not good
due to the communication radio irregularity [13], [14]. Since
both AOA and RSSI are also constrained by their effective
distance, they are not appropriate for the localization in
sparse road sensor networks that is the target in this paper.

The range-free localization schemes try to localize
sensors without costly ranging devices. One of the most
popular range-free schemes is based on the anchor-based
scheme. The main idea is that the nonanchors can
determine their locations using the overlapping region of
communication areas for the anchors [4], [5], [15], [16], [17].
However, since these schemes require a dense deployment
of anchors to give beacon signals, these solutions are not
applicable to localization in sparse road sensor networks.

Recently, a series of event-driven localization schemes
have been proposed to simplify the functionality of sensors
for localization and to provide high-quality localization. The
main idea of these schemes is to use artificial events for
sensor localization that are generated from the event
scheduler [18], [19], [20], [21], [22]. Although their effective
range can reach hundreds of meters, additional external
devices and manual operations are needed to generate
artificial events. On the other hand, our localization scheme
is a new branch of event-driven localization schemes.
Because our localization scheme is based on the natural
events of moving vehicles, event delivery is not problematic.

The graph matching, as one key component in this paper,
has intensively been researched in the past [23], [24], [25].
The isomorphic graph matching is performed for matching
two graphs with the same structure [26]; that is, both graphs
have the same number of vertices and the same edge
connection structures. Umeyama [23] proposed an iso-
morphic graph matching algorithm for two isomorphic
graphs whose edge weights are a little different. The
proposed algorithm uses an eigen-decomposition approach
to deal with this weighted graph matching. In the case
where a graph is a subgraph of another graph, that is, the
subgraph isomorphism, the subgraph matching is per-
formed. Ullmann [25] proposed an algorithm for this
subgraph matching. The proposed algorithm has the
limitation that the graphs cannot have attributes, such as
edge weight. To deal with graph attributes in the subgraph
matching, Cordella et al. [24] proposed a deterministic
matching method for verifying both isomorphism and
subgraph isomorphism. In our APL, Umeyama’s method
is used for the graph matching based on the isomorphism
between the road network and the sensor network.

3 PROBLEM FORMULATION

We consider a network model where sensors are placed at
both intersection points and nonintersection points on road
networks. The objective is to localize wireless sensors
deployed in road networks only with a road map and
binary vehicle-detection time stamps taken by sensors as
shown in Fig. 1a. Section 3.1 lists definitions for APL and
Section 3.2 lists assumptions.
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3.1 Definitions

We define nine terms as follows:

1. Neighboring nodes. Sensors geographically adja-
cent to a sensor on the road network regardless of
the connectivity by the communication range of a
sensor. In Fig. 1a, sensors s2, s19, and s50 are the
neighboring nodes of sensor s1.

2. Intersection nodes. Sensors placed at an intersection
and having more than two neighboring sensors (i.e.,
degree � 3). In Fig. 1a, sensors s1, s2, and s3 are
intersection nodes.

3. Nonintersection nodes. Sensors placed at a non-
intersection and having one or two neighboring
sensors. In Fig. 1a, sensors s19, s20, and s50 are
nonintersection nodes.

4. Virtual Topology. Let Virtual Topology be Hv ¼
ðVv;MvÞ, where Vv ¼ fs1; s2; . . . ; sng is a set of sensors
in the road network, andMv ¼ ½vij� is a matrix of path
length vij for sensors si and sj. Fig. 1b shows a virtual
topology of sensors in the road network, shown in
Fig. 1a. Mv is a complete graph, since there is an edge
between two arbitrary sensors. We define the edge of
the virtual topology as virtual edge. In Fig. 1b, among
the virtual edges, a solid thick line represents an edge
estimate (i.e., road segment) between two sensors,
which means that they are adjacent on the road
network as neighboring nodes. The dotted thin line
represents a path estimate between two sensors, which
means that they are not adjacent on the road network.

5. Virtual Graph. Let Virtual Graph be Gv ¼ ðVv; EvÞ,
where Vv ¼ fs1; s2; . . . ; sng is a set of sensors in the
road network, and Ev ¼ ½vij� is a matrix of road
segment length vij between sensors si and sj. Fig. 1c
shows a virtual graph of the sensor network deployed
on the road network shown in Fig. 1a, where the
black node represents an intersection node and the
gray node represents a nonintersection node.

6. Reduced Virtual Graph. Let Reduced Virtual Graph
be ~Gv ¼ ð ~Vv; ~EvÞ, where ~Vv ¼ fs1; s2; . . . ; smg is a set
of sensors placed only at intersections in the road
network, and ~Ev ¼ ½vij� is a matrix of road segment
length vij between intersection nodes si and sj. The
reduced virtual graph ~Gv is obtained by deleting
nonintersection nodes and their edges from the
virtual graph Gv through the degree information in
Gv. Refer to Section 4.4.1. For example, Fig. 1e shows
a reduced virtual graph consisting of only intersec-
tion nodes of virtual graph in Fig. 1c.

7. Real Graph. Let Real Graph be Gr ¼ ðVr; ErÞ, where
Vr ¼ fp1; p2; . . . ; png is a set of intersections in the
road network around the target area, and Er ¼ ½rij�
is a matrix of road segment length rij for intersec-
tions pi and pj. Real Graph can be obtained through
map services, such as Google Earth and Yahoo
Maps. Fig. 1f shows a real graph corresponding to
the road network whose intersection points have
intersection sensor nodes, shown in Fig. 1d. The real
graph is isomorphic to the reduced virtual graph ~Gv

shown in Fig. 1e [26].
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Fig. 1. Wireless sensor network deployed in road network. (a) Road Network with Wireless Sensors. (b) Virtual Topology of Wireless Sensors:

Hv ¼ ðVv;MvÞ. (c) Virtual Graph representing Sensor Network: Gv ¼ ðVv; EvÞ. (d) Road Network only with Intersection Nodes of Virtual Graph.

(e) Reduced Virtual Graph consisting of Intersection Nodes of Virtual Graph: ~Gv ¼ ð ~Vv; ~EvÞ. (f) Real Graph corresponding to Road Map:Gr ¼ ðVr; ErÞ.



8. Shortest Path Matrix. Let Shortest Path Matrix for
G ¼ ðV ;EÞ be M such that M ¼ ½mij� is a matrix of
the shortest path length between two arbitrary
nodes i and j in G. M is computed from E by the
All-Pairs Shortest Paths algorithm, such as the Floyd-
Warshall algorithm [27]. We define Mr as the shortest
path matrix for the real graph Gr ¼ ðVr; ErÞ, and
define Mv as the shortest path matrix for the virtual
graph Gv ¼ ðVv; EvÞ.

9. APL Server. A computer that performs the localiza-
tion algorithm with binary vehicle-detection time
stamps collected from the sensor network.

3.2 Assumptions

The localization design of APL is based on the following

assumptions:

. Sensors have simple sensing devices for binary
vehicle detection without any costly ranging or
GPS devices [28]. Each detection is a tuple ðsi; tjÞ,
consisting of a sensor ID si and time stamp tj.

. There exists an ad hoc network consisting of sensors
or a Delay Tolerant Network (DTN) for wireless
sensors to deliver vehicle-detection time stamps to
the APL server. For such a DTN, vehicles as data
mules [29] can construct Vehicular Ad Hoc Networks
(VANETs) for delivering the time stamps to the APL
server through the VANET forwarding schemes,
such as VADD [30] and TBD [31].

. Sensors are time-synchronized at the millisecond
level. For this time synchronization accuracy in
sparse road sensor networks, the time synchroniza-
tion protocol in [32] can be used along with vehicles
for time information sharing in the DTN scenario.

. The APL server has road map information for the
target area under surveillance and can construct a real
graph consisting of intersections in the road network.

. Vehicles pass through all road segments on the
target road networks. The vehicle mean speed is
close (but not identical) to the speed limit assigned
to roadways. The standard deviation of vehicle
speed is assumed to be a reasonable value, based
on real road traffic statistics obtained from transpor-
tation research [33].

. Sensors are deployed into the target road network
such that each road intersection has one intersection
node and also each intersection node has at least
three neighboring nodes whose road segments are
different from each other.

4 APL SYSTEM DESIGN

4.1 System Architecture

We use an asymmetric architecture for localization as in

Fig. 2 in order to simplify the functionality of sensors for

localization. As simple devices, sensors only monitor road

traffic and register vehicle-detection time stamps into their

local repositories. A server called the APL server processes

the complex computation for localization. Specifically, the

localization procedure consists of the following steps as

shown in Fig. 2:

. Step 1. After road traffic measurement, sensor si
sends the APL server its vehicle-detection time
stamps along with its sensor ID, i.e., ðsi; TiÞ, where
si is sensor ID and Ti is time stamps.

. Step 2. The traffic analysis module estimates the
road segment length between two arbitrary sensors
with the time stamp information, constructing a
virtual topology Hv ¼ ðVv;MvÞ, where Vv is the
vertex set of sensor IDs, and Mv is the matrix
containing the distance estimate of every sensor pair.

. Step 3. The prefiltering module converts the virtual
topology Hv into a virtual graph Gv ¼ ðVv; EvÞ,
where Vv is the vertex set of the sensor IDs, and Ev
is the adjacency matrix of the estimated road
segment lengths.

. Step 4. The graph matching module constructs a
reduced virtual graph ~Gv ¼ ð ~Vv; ~EvÞ from the virtual
graph Gv, where ~Vv is a set of only intersection nodes
among Vv, and ~Ev is a set of edges whose endpoints
both belong to ~Vv. ~Gv is isomorphic to the real graph
Gr ¼ ðVr; ErÞ. The graph matching module then
computes a permutation matrix P , making the
reduced virtual graph ~Gv ¼ ð ~Vv; ~EvÞ be isomorphic
to the real graph Gr ¼ ðVr; ErÞ.

. Step 5. The location identification module determines
each sensor’s location on the road map by applying
the permutation matrix P to both the reduced virtual
graph ~Gv and the real graph Gr. Through this
mapping, node location information ðs; lÞ is con-
structed such that s is the sensor ID vector, and l is the
corresponding location vector; that is, li ¼ ðxi; yiÞ,
where si is the sensor ID, xi is the x-coordinate, and yi
is the y-coordinate in the road map.

. Step 6. With ðs; lÞ, the APL server sends each sensor
si its location with a message ðsi; liÞ.

In the rest of this section, we describe the technical
content of each step. We start with the second step, because
the operations in Step 1 are straightforward.

4.2 Step 2: Traffic Analysis for Road Segment
Length Estimation

In order to estimate road segment lengths, we found a key
fact that vehicle arrival patterns in one sensor are statistically
maintained at neighboring sensors close to the sensor. This
means that the more closely the two sensors are located, the
more correlated the vehicle-detection time stamps are.
Consequently, we can estimate road segment length with
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Fig. 2. APL system architecture.



estimated movement time between two adjacent sensors
using the correlation of the time stamp sets of these two
sensors, along with the vehicle mean speed (i.e., speed limit
given on the road segment). Through both outdoor test and
simulation, we found that we can estimate the lengths of
road segments used by vehicles during their travels on
roadways only with vehicle-detection time stamps.

4.2.1 Time Difference on Detection Operation

In this section, we explain the TDOD operation on binary
vehicle-detection time stamps. The TDOD operation for
time stamp sets Ti and Tj from two sensors si and sj is
defined as follows:

dijhk ¼ jtih � tjkj; ð1Þ

where tih 2 Ti for h ¼ 1; . . . ; jTij is the hth time stamp of
sensor si and tjk 2 Tk for k ¼ 1; . . . ; jTjj is the kth time stamp
of sensor sj. We define a quantized TDOD as follows:

d̂ijhk ¼ g
�
dijhk
�
; ð2Þ

where g is a quantization function to map the real value of
dijhk to the discrete value. The interval between two adjacent
quantization levels is defined according to the granularity of
the time difference, such as 1 second, 0.1 second, or
1 millisecond. The number m of quantization levels (i.e.,
qk for k ¼ 1; . . . ;m) is determined considering the expected
movement time of vehicles in the longest road segment of
the relevant road network.

We define frequency as the count of a discrete time
difference. After the TDOD operation for two time stamp
sets from two sensors, the quantization level with the highest
frequency (i.e., d̂ij) is regarded as the movement time of
vehicles for the roadway between these two sensors si and
sj as follows:

d̂ij  arg max
qk

fðqkÞ; ð3Þ

where f is the frequency of quantization level qk for
k ¼ 1; . . . ;m; that is, in (3), the value of d̂ij is set to the
quantization level qk with the maximum frequency. The
movement time on the road segment can be converted into
road segment length using the formula l ¼ vt, where l is the
road segment’s length, v is the vehicle mean speed, and t is
the vehicle mean movement time on the road segment.

For example, Fig. 3 shows the detection sequence for
vehicles at intersection nodes s1, s2, and s3 in Fig. 1a, where
s2 is a common neighbor of s1 and s3. Fig. 4 shows the
TDOD operation for nodes s1 and s2 that is a kind of
Cartesian product for two time stamp sets. Fig. 5 shows the
histogram [34] obtained by the TDOD operation for two
time stamp sets. The time difference value (7.3 sec) with the
highest frequency indicates the estimated movement time
between two nodes. For the theoretical analysis of the
validity of TDOD, please refer to Section 4.2.2.

We performed outdoor test to verify whether our TDOD
operation could give good estimates for road segment
lengths in terms of vehicle movement time. The results of
outdoor test indicate that our TDOD can give reasonable
road segment length indicators. Fig. 6 shows the road map
of local roadways in Minnesota for outdoor test. The test
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Fig. 3. Detection sequence for vehicles at sensors s1, s3, and s2.

Fig. 4. Time Difference on Detection for sensors s1 and s2. (a) TDOD
between time stamps t1;1 and t2;i. (b) TDOD between time stamps t1;2
and t2;i.

Fig. 5. Estimation of movement time through TDOD operation.



roadways consist of four intersections A, B, C, and D. Speed
limits on these road segments are 40 or 30 MPH, as shown
in Table 1. We performed vehicle detection manually for
more accurate observation; note that it is hard to get
accurate vehicle detections at intersections with the current
motes due to the sensor capability and mote’s physical size,
so the development of the vehicle-detection algorithm
based on motes is left as future work. As shown in Table 1,
for the road segments of A$ B, C $ D, and D$ A, the
expected movement time is close to the measured move-
ment time obtained by TDOD operation. On the other hand,
the road segment of B$ C has a relatively bigger
difference between the expected movement time and the
measured movement than the other road segments. This is
because B$ C has a traffic signal in the middle of the road
segment, that is, at intersection E in Fig. 6. Due to this traffic
signal, some of vehicles moving on B$ C stop at
intersection E, so they take a longer travel time than the
expected one. Therefore, if a sensor is deployed at each
intersection according to our assumption in Section 3.2, the
expected movement time will be close to the measured
movement time.

From Table 1, it can be seen that the estimated movement
times are close to the expected movement times; note that
even though the manual measurement can introduce some
human errors, this experimental result shows the significant
evidence that the TDOD can provide us with the estimates
accurate enough to perform the localization. Note that the
road network topology is square in Fig. 6, but the validity of
the TDOD operation in the irregular road network topology
in Fig. 1a is shown through the simulation in Section 6.

Therefore, with the TDOD operation, the distance
estimates between two arbitrary nodes can be obtained
for the virtual edges in the virtual topology, as shown in
Fig. 1b. Note that this TDOD operation does not classify
sensors into either intersection nodes or nonintersection
nodes. One important observation is that as two sensors
are geographically closer to each other, the TDOD
operation on their time stamps gives a better movement
time estimate between the two sensors.

4.2.2 Analysis of Movement-Time-Estimation Error

In this section, we analyze the probability that the TDOD
operation gives a wrong movement time estimation for an
edge rather than an accurate movement time estimation.
This probability is defined as the movement-time-estimation
error probability. In this section, we will show that this
movement-time-estimation error probability is very small in
the TDOD operation. First, we will describe a scenario for
the TDOD operation. Second, in such a scenario, we will
compute the movement-time-estimation error probability.

First of all, Fig. 7a shows a scenario for the TDOD
operation for the vehicle arrival time stamps for sensors s1

and s2 that are adjacent with each other, as shown in Fig. 1a.
In this figure, m vehicles arrive at s1 and only n vehicles
among them move to s2; note that at the time diagram at s1,
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Fig. 6. Road network for outdoor test.

TABLE 1
Outdoor Test Results

Fig. 7. TDOD analysis for sensors s1 and s2. (a) Vehicle Travel from
Sensor s1 to Sensor s2 for Vehicle Movement Time T . (b) Vehicle
Counting at Time Windows for Noisy Estimate T 0 at Sensor s2.
(c) Vehicle Counting in Aggregated Time Window of Noisy Estimate T 0

at Sensor s2.



the solid arrows denote vehicles moving to s2 and the
dotted arrows denote vehicles moving to other sensors.
Suppose that the road segment of ðs1; s2Þ has the length of l
and the average vehicle speed (e.g., speed limit) is v. Let T
be the real movement time for the edge ðs1; s2Þ such that
T ¼ l=v. Clearly, as shown in Fig. 7a, n vehicle moving to s2

will arrive at s2 after time T . Thus, the TDOD operation on
two time stamp sets of s1 and s2 must have at least n pairs of
movement time T .

In order to compute the movement-time-estimation error
probability, we define T 0 as noisy movement time estimate
for the edge ðs1; s2Þ that is an arbitrary time. As shown in
Fig. 7b, for m arrivals at s1, we consider m time windows
corresponding to noisy estimate T 0 for the arrivals; note that
the window’s width w is the granularity of the time
difference that determines the interval between two
adjacent quantization levels, as mentioned in Section 4.2.1.
The window’s center corresponds to the sum of the arrival
time stamp ti at s1 and the noisy estimate T 0 for i ¼ 1::m.
For example, for time stamp t1 at s1, the window’s center is
t1 þ T 0. With these windows, we can count the vehicles
corresponding to pairs for the noisy estimate T 0. That is, in
Fig. 7b, the frequency for T 0 is the number of the vehicle
arrivals within the windows for T 0 at s2. Thus, with T and
T 0, we can redefine the movement-time-estimation error
probability as the probability that the noisy estimate T 0 has
a higher frequency than the real movement time T .

Now, with the setting in Fig. 7b, we can compute the
movement-time-estimation error probability with the vehicle
arrival process. We model this vehicle arrival process as
Poisson process with arrival rate � for each sensor. Note this
modeling is valid by the following two reasons; 1) the
Kolmogorov-Smirnov test can accurately approximate the
statistics of vehicle interarrival time based on the empirical
data for a real roadway into an exponential distribution [35]
and 2) an exponential distribution for the interarrival time is
equivalent to a Poisson distribution for the arrival number
within a unit time [36].

Under the Poisson process, in Fig. 7b, the first property is
that the number of arrivals for one window is independent
of that of another window [36]. The second property is that
the number of arrivals are determined by the length of time
interval [36]. From these two properties, the counting
process of vehicle arrivals within windows of Fig. 7b can
be generalized into the Poisson process of Fig. 7c where the
window’s time interval is w, the number of windows is m,
the time interval of the aggregated window is mw, and the
arrival rate is �. Let Perror be movement-time-estimation
error probability. Let N be the random variable of the
number of vehicle arrivals within the aggregated window,
as shown in Fig. 7b. Let m be the number of vehicles
arriving at sensor s1. Let n be the number of vehicles
arriving at sensor s2 from sensor s1. Let � be the vehicle
arrival rate for sensor s2. Thus, the movement-time-estimation
error probability Perror can be computed as follows:

Perror ¼ P ½N > n�
¼ 1� P ½N � n�

¼ 1�
Xn

k¼0

e��mwð�mwÞk

k!
:

ð4Þ

We compute Perror for edge ðs1; s2Þ in the sensor network
shown in Fig. 1a. Through the simulation with the
parameter setting in Table 2, we obtain four parameters
m, n, �, and w to compute Perror. The movement-time-
estimation error probability is Perror ¼ 8:93 � 10�14 ’ 0
where m ¼ 188, n ¼ 60, � ¼ 0:05, and w ¼ 2 seconds.
Therefore, since Perror is very small, we can claim that the
TDOD operation can give an accurate movement time
estimation with a high probability.

4.2.3 Enhancement of Road Segment Length

Estimation

We found that an estimate close to a road segment’s length
cannot always be obtained by the maximum frequency
through the TDOD operation discussed in Section 4.2.1.
The reason is that there can exist some noisy estimates
with higher frequencies than an expected good estimate.
Note that even though the probability that a noisy estimate
(i.e., random movement time estimate) has a higher
frequency than an accurate movement time estimate is
very small (as discussed in Section 4.2.2), this case can still
happen with a small probability.

In order to resolve this problem, we introduce a more
robust estimation method called aggregation method where
the mean of several adjacent time differences becomes a
new TDOD value, and the sum of frequencies of those is the
corresponding frequency. This is based on an observation
that time differences close to a real time difference (i.e.,
movement time needed by a vehicle with the vehicle mean
speed on a road segment) have relatively high frequencies
by the TDOD operation for two time stamp series, as shown
in Fig. 4. On the other hand, we observe that a noisy
estimate with the highest frequency occurs randomly, and
its neighbor estimates have relatively low frequencies. This
method based on TDOD aggregation is called Aggregation
Method and the previous simple TDOD is called Nonag-
gregation Method. We determine the aggregation window
size proportionally to standard deviation �v of the vehicle
speed, such as c � �v for c > 0. Thus, in Aggregation Method,
the movement-time-estimation error probability in Section 4.2.2
will be extremely small.

1628 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 11, NOVEMBER 2011

TABLE 2
Simulation Configuration



Fig. 8 shows the comparison between the nonaggrega-
tion method and aggregation method through simulation.
The aggregation window size is 10 such that the vehicle
speed deviation �v is 10 km/h and the window size factor c
is 1. Starting from the time difference value of zero in the
histogram for Nonaggregation Method, we choose a repre-
sentative of the adjacent time difference values within the
aggregation window size as the mean of them, and then
sum their frequencies into the representative’s frequency.
We then move the window to the right by the unit of time
difference value and repeat the computation of the
representative and frequency. Thus, the histogram for
Aggregation Method is obtained by this moving window.

We found that for the road segment between sensors s2

and s3 in Fig. 1a whose real time difference is 9.36 sec with
the vehicle speed �v ¼ 50 km/h, the nonaggregation
method makes a wrong estimate (i.e., 26.8 sec), but the
aggregation method makes a correct estimate (i.e., 9.3 sec).
Thus, this aggregation method can be used to obtain good
estimates for road segment lengths in a virtual topology.

4.3 Step 3: Prefiltering Algorithm for Virtual Graph

The prefiltering algorithm is performed to make a virtual
graph that has only edge estimates among virtual edges (i.e.,
distance estimates) in the virtual topology (e.g., Fig. 1b)
obtained from the TDOD operations in Section 4.2. Our
prefiltering algorithm consists of two prefilterings: 1) Relative
Deviation Error and 2) Minimum Spanning Tree.

We explain the prefiltering procedure and the effect of
two prefilterings on a virtual topology using Fig. 9. As
shown in Fig. 9a, there is a partial road network of the entire
one shown in Fig. 1a containing sensors fs1; s2; s3; s4; s5;
s19; s20; s22g. In the virtual topology, two arbitrary sensors
among them have a distance estimate, as shown in Fig. 9b.
Using the prefiltering based on the relative deviation error,
we remove the virtual topology’s edges corresponding to
inaccurate path estimates, and we then construct a virtual
graph, shown in Fig. 9c. Next we apply the prefiltering
based on the minimum spanning tree to the virtual graph,
so the virtual graph containing only the edge estimates is
constructed by removing accurate path estimates, as shown

in Fig. 9d. In this section, we explain the idea of these two
prefilterings for obtaining the virtual graph Gv ¼ ðVv; EvÞ
from virtual topology Hv ¼ ðVv;MvÞ in detail.

4.3.1 Prefiltering Based on the Relative Deviation Error

Large errors in path estimates will significantly affect our
future steps. An example is as follows: We know that the
smallest entry in Mv must be an edge when no large error
occurs, since path lengths are always the sum of more than
one edge length. However, when there are large errors inMv,
they can have any value inMv, that is, either a large value or a
small value. In this case, the smallest entry is no longer
guaranteed to be an edge estimate because a path estimate
can be perturbed to be the smallest one by a large error. As a
result, it is very important to filter out all the entries having
large errors at first, regarding them as path estimates.

We define Relative Deviation (�) as the ratio of the
standard deviation (�) to the mean (�), that is, � ¼ �=�; note
that this is known as the coefficient of sample variation in
statistics and is used to compare the amount of variance
between populations with different means. To compute
both the mean � and the standard deviation � of each entry
in Mv, we use multiple estimation matrices of Mv per
measurement time with the same duration. Note that
outliers are at first eliminated from the multiple estimation
matrices of Mv in order to let � and � be less affected by
these outliers and then be more robust statistics; the
estimates are regarded as outliers when they are less or
greater than the � percent (e.g., 20 percent) of the median of
all the sample measures for an entry in Mv; note that the
outlier threshold � is determined as 20 percent through the
empirical results in simulations.

In order to compute the relative deviations of the
estimates, we divide the vehicle-detection time stamps into
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Fig. 8. Comparison between nonaggregation method and aggregation

method.

Fig. 9. Procedure of prefiltering for obtaining virtual graph. (a) Road
Network with the following Sensors: fs1; s2; s3; s4; s5; s19; s20; s22g.
(b) Virtual Topology for the following Sensors: fs1; s2; s3; s4;
s5; s19; s20; s22g. (c) Virtual Graph after Prefiltering based on the
Relative Deviation Error. (d) Virtual Graph after Prefiltering based on
the Minimum Spanning Tree.



time windows (e.g., every half an hour) and perform the
TDOD operation for the time stamps of two arbitrary
sensors within the same time window. We then compute
the relative deviations of the virtual edge estimates for each
pair of sensors. If the relative deviation is greater than a
certain threshold " (e.g., 10 percent), the corresponding
entry is regarded as a path estimate, and it is replaced with
1, indicating that this entry is a path estimate. Note that in
our prefiltering, the threshold " is set to the ratio of the
known vehicle speed deviation to the vehicle speed limit in
the road network. This threshold is empirically determined
in order to allow the prefiltering to work considering the
real vehicle speed deviation.

Note that for certain reasons (e.g., outliers and measure-
ment errors), the edge estimate can be regarded as path
estimate due to a big relative deviation error, leading to
being filtered out. In this case, we cannot perform the
isomorphic graph matching since the sensor network
topology (i.e., reduced virtual graph) and the road network
topology (i.e., real graph) are not isomorphic any more.
However, this almost does not happen under the realistic
setting in simulations in Section 6.

4.3.2 Prefiltering Based on the Minimum Spanning Tree

Suppose that there are n sensors in the virtual topologyHv ¼
ðVv;MvÞ where Vv is the vertex set and Mv is the n� n
adjacency matrix of the virtual topology. Prefiltering based
on the Minimum Spanning Tree consists of three steps: 1) The
first step identifies the first n� 1 edges of the virtual graph.
2) The second step identifies the remaining edge candidates
of the virtual graph. 3) The third step filters out the path
estimates among the edge candidates of the virtual graph.

Step 1. We select n� 1 edges from Mv that make a
Minimum Spanning Tree (MST) for the virtual topology by
using a Minimum Spanning Tree algorithm, such as Prim’s
algorithm [27]. We can prove that the n� 1 edges that form
the MST are definitely edge estimates as follows:

Let Mvði; jÞ be the entry of matrix Mv where i is the row
index and j is the column index.

. Case 1. The smallest entry must be an edge because the
path length is the sum of more than one edge length.

. Case 2. Suppose we have found m edges, where
1 � m < n� 1. Let N be a set of the corresponding
nodes of the m edges. We then choose the smallest
entry Mvði; jÞ that satisfies i 62 N , and j 2 N . Mvði; jÞ
must be an edge by the following reason: If Mvði; jÞ
is not an edge, another node k must exist such that
Mvði; jÞ ¼Mvði; kÞ þMvðk; jÞ. 1) I f k 2 N , then
Mvði; kÞ < Mvði; jÞ, which contradicts our assump-
tion that Mvði; jÞ is the smallest entry. 2) If k 62 N ,
then Mvðk; jÞ < Mvði; jÞ, which also contradicts our
assumption that Mvði; jÞ is the smallest.

Step 2. We find all of the other edge candidates of the
virtual graph Gv ¼ ðVv; EvÞ from the virtual topology
Hv ¼ ðVv;MvÞ, as shown in Fig. 1c. First, the edge set Ev is
initialized to have n� 1 edges obtained by the previous
step. Then, with Ev, the shortest path matrix M 0

v is
computed for the shortest path between an arbitrary pair
of nodes. We use the fact that M 0

vði; jÞ �Mvði; jÞ. For an
arbitrary pair of nodes i and j, M 0vði; jÞ is the shortest path

created only by n� 1 edges, while Mvði; jÞ is the one created
from more edges; that is, Mvði; jÞ might be shorter than
M 0

vði; jÞ. In Theorem A.1 in Appendix A, we prove that
Mvði; jÞ must be an edge estimate if it is the smallest one
among all of the entries in Mv that satisfies Mvði; jÞ <
M 0

vði; jÞ, since there is no entry with a large error after the
previous filtering based on the relative deviation error.
Consequently, Mvði; jÞ is the nth edge estimate. We update
the edge set Ev for M 0

v by adding this new edge to Ev, and
then recompute the matrix M 0

v using this new Ev. We repeat
this process until M 0

v and Mv are exactly the same. In this
way, we can find out edge candidates for the other edges of
Ev from Mv.

Step 3. We filter out the path estimates among the edge
candidates of the virtual graph, which are not filtered out
from the prefiltering based on Relative Deviation Error in
Section 4.3.1 and the prefiltering of Steps 1 and 2. Fig. 10
shows the procedure of filtering out path estimates from the
virtual graph after Step 2. In this figure, edges e1;5 and e2;3 are
path estimates in the sensor network as shown in Fig. 9a. The
idea of filtering these path estimates is to check whether
there exists a path consisting of shorter edges than a path
estimate or not. If there exists such a path, the path estimate
can be deleted from the virtual graph. Otherwise, it remains
in the virtual graph. For example, for edge e1;5 in Fig. 10a,
there exists a path consisting of two edges e1;19 and e19;5

whose lengths are shorter than e1;5. Thus, the edge e1;5 can be
deleted from the virtual graph. This checking can be
performed with the shortest path algorithm (e.g., Floyd-
Warshall algorithm) after deleting the edge e1;5 from the
virtual graph. For edge e2;3 in Fig. 10b, the same procedure
can be performed.

Note that an edge candidate may be a real edge in the
sensor network. In this case, there exists an ambiguity
whether this edge is a real edge or a path estimate. Thus, in
order to perform the graph matching correctly in Section 4.4,
it is needed to delete these ambiguous edges that have
alternative paths consisting of other shorter edges from the
real graph corresponding to the road network (e.g., Fig. 9a).

4.4 Step 4: Graph Matching

In this section, we explain how to construct a reduced
virtual graph from the virtual graph constructed by the
prefiltering in Section 4.3, and then how to match the
reduced virtual graph and the real graph that are isomorphic
to each other [26].
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Step 2. (b) Virtual Graph after filtering edge e1;5.



4.4.1 Construction of Reduced Virtual Graph

Let Gv ¼ ðVv; EvÞ be a virtual graph. In order to perform

isomorphic graph matching, two graphs should be iso-

morphic. Since the virtual graph Gv returned from the

prefiltering module has more vertices and edges than the

real graph Gr, we cannot perform isomorphic graph

matching directly. From the observation that each intersec-

tion node has at least three neighboring sensors, a reduced

virtual graph ~Gv ¼ ð ~Vv; ~EvÞ is made from the virtual graph

Gv as follows:
Let N be a set of nonintersection nodes of Gv. Let dGv

ðuÞ
be the degree of u in the graph Gv. Let euv be the edge whose

endpoints are u and v for u; v 2 Vv. Let lðeÞ be the length of

the edge e 2 Ev. We perform the following for all u 2 N :

. If dGv
ðuÞ ¼ 1, then delete u from Gv and delete an

edge whose one endpoint is u from Gv.
. If dGv

ðuÞ ¼ 2, then delete u from Gv, merge the two
edges eux and euy, whose one endpoint is u, into one
edge exy. The length of the edge exy is set to
lðeuxÞ þ lðeuyÞ.

For example, Fig. 11 shows the construction of a reduced

virtual graph from a virtual graph in which a set of

intersection nodes is {b,d,k,m} and a set of nonintersection

nodes is {a,c,e,f,g,h,i,j,l,n}. After removing nonintersection

nodes and dealing with the corresponding edges, the final

reduced virtual graph consists of four intersection nodes b,

d, k, and m, as shown in Fig. 11b.
Finally, we can perform the graph matching between

the sensor network and the road network since the reduced

virtual graph is isomorphic to the real graph; that is, two

graphs have the same structure for one-to-one mapping.

We will explain how to perform the graph matching in the

next section.

4.4.2 Weighted Graph Matching

Since the reduced virtual graph’s ~Ev and the real graph’s Er

are isomorphic, our graph matching can be defined as

searching for the n� n permutation matrix P to satisfy the

following, in which P is the row permutation matrix, and

PT is the column permutation matrix:

�ðP Þ ¼ kEr � P ~EvP
Tk2

2; ð5Þ

 arg min
P̂

�ðP̂ Þ; ð6Þ

Êv  P ~EvP
T : ð7Þ

Let P be an n� n optimal permutation matrix of (6) in
terms of the minimum estimation error. The result Êv of (7)
is a matrix isomorphic to Er where indices in both matrices
indicate the node identifiers; that is, the sensor ID in ~Ev
corresponds to the intersection ID in Er for i ¼ 1; . . . ; n. This
optimization problem is called the Weighted Graph Match-
ing Problem (WGMP). In order to get the exact solution P ,
allowing the global minimum of �ðP Þ, all of the possible
cases should be checked. Since this is a purely combinator-
ial problem, the algorithm based on combination has the
time complexity of Oðn!Þ for n nodes. Consequently, this
is an unfeasible approach in reality. We need to use
approximate approaches to give an accurate permutation
matrix P , such as an eigen-decomposition approach to
WGMP [23], known as an optimal approach. For our graph
matching purpose, we adopt the eigen-decomposition
approach that has polynomial time complexity.

We investigated the effect of the real vehicle mean speed
different from the speed limit on roadways. The conclusion
is that as long as all of the road segments have the same
constant scaling factor for their mean speeds, our localiza-
tion algorithm works well regardless of the distribution of
the vehicle mean speed during traffic measurement! In other
words, our algorithm works even though the actual speeds
are unknown. In the case where each road segment has a
different scaling factor according to unbalanced congestion
conditions, our algorithm does not work well. To address
this issue, we suggest to conduct measurements under a light
road traffic condition, such as during night. Without
congestion, we expect that all of the road segments tend to
have the same constant scaling factor for their mean speeds.
We have detailed proof in Theorem B.1 in Appendix B.

4.5 Step 5: Node Location Identification

In this section, we explain how to identify the location of
each intersection node with the permutation matrix obtained
through the graph matching in Section 4.4, and then how to
identify the location of each nonintersection node.

4.5.1 Localization of Intersection Nodes

We perform the identification of each intersection node’s
location with the permutation matrix P returned from the
graph matching module. Let�ðsÞbe the permutation function
corresponding to the permutation matrix P such that

� : s 2 f1; . . . ; ng ! p 2 f1; . . . ; ng; ð8Þ

that is, p ¼ �ðsÞ where s is the sensor ID and p is the
intersection ID corresponding to s. With the permutation
function in (12), we can identify the intersection ID (p) on
the road map for each intersection node (s).

4.5.2 Localization of Nonintersection Nodes

In the previous section, we know the positions of the
intersection nodes. Now we localize the positions of the
nonintersection nodes of degree 2 or 1. For nonintersection
nodes of degree 2, using Ev of the virtual graph Gv, we
begin from an intersection node u, and then create a path
from u to another intersection node v, that is, u! a1 !
a2 ! � � � ! am ! v. All ai for i ¼ 1; . . . ;m are nonintersec-
tion nodes whose degrees are 2. Since we have already
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Fig. 11. Construction of reduced virtual graph. (a) Virtual Graph with four

Intersection Nodes fb; d; k;mg. (b) Reduced Virtual Graph after deleting

Nonintersection Nodes.



localized nodes u and v, and all of these ai must be placed
on the edge from u to v on the reduced virtual graph ~Gv, as
shown Fig. 1e, we can know the positions of these ai by
looking at the length information in Ev of the virtual graph
Gv, as shown in Fig. 1c. We repeat this procedure until we
localize all of the nonintersection nodes in the virtual graph.

For example, Fig. 12 shows the localization of non-
intersection nodes of degree 2. Two nonintersection nodes
s37 and s38 are known to be located between intersection
nodes s15 and s17 from the adjacency matrix Ev of the
virtual graph Gv, as shown in Fig. 12a. We can identify
the locations of intersection nodes s15 and s17 through the
localization of intersection nodes in Section 4.5.1; the
nodes s15 and s17 are placed at intersections p4 and p2,
respectively. Thus, this intersection node localization lets
us know that two nonintersection nodes s37 and s38 are
sequentially placed between intersections p4 and p2, as
shown in Fig. 12b.

For nonintersection nodes of degree 1, let w be a
nonintersection node of degree 1. Since w is adjacent to an
intersection node u 2 Ev, it can be known to which
intersection w is adjacent in a road network. For example,
since nonintersection nodes s41 and s42 are adjacent to an
intersection node s18, it can be known that they are adjacent
to an intersection p1.

5 PRACTICAL ISSUES

In this section, we discuss the following practical issues for
the deployment of our localization scheme in real road
networks: 1) Time synchronization error, 2) Vehicle detection
missing and duplicate vehicle detection, and 3) Intersection
node missing. They are important because they affect the
localization accuracy in reality. For these issues, the impacts
on the localization and the solutions are discussed.

5.1 Sensor Time Synchronization Error

The inaccuracy of the time stamps should be considered,
due to time synchronization errors among sensors. That is,
sensor nodes might have different times at a certain level
(e.g., millisecond). Let � be the exact time. Let �i be the time
of sensor si such that �i ¼ � þ �i and �i is a uniform random
variable in the interval ½��max; �max�. If the time error is
small, such as c milliseconds in which c is a small constant,
then the road segment length estimation through the time
difference will not be affected so much. For example,

suppose that the average vehicle speed is v, and some road
segment’s length is l. In the case of perfect time synchro-
nization, our time difference scheme will estimate the
movement time t in the road segment such that t 	 l=v. In
the case where two adjacent sensors have time errors ��max
and �max, respectively, the estimated movement time t̂ will
be approximately tþ 2�max. Consequently, if �max is small,
then the movement time t̂ will be close to t, leading to a
reasonable estimate for the APL localization. We will show
the effect of the time synchronization error in Section 6.

5.2 Vehicle Detection Missing and Duplicate Vehicle
Detection

There might be vehicle detection missing or duplicate
vehicle detection due to some noises. Since our algorithm
uses many vehicle-detection time stamps, the missing of
some vehicle detections does not affect the road segment
length estimation. We will show the effect of the detection
missing for the whole localization accuracy through
simulation in Section 6. The conclusion for the detection
missing probability is that our localization scheme has no
localization error even under a reasonably high detection
missing probability (e.g., 0.25) at each sensor.

Also, we will investigate the effect of the duplicate
detection in Section 6. The conclusion for the duplicate
detection is that our localization scheme has no localization
error even under a very high duplicate detection probability
(e.g., 1) at each sensor. The duplicate vehicle detection has
positive effect. This is because it lets the multiple vehicle-
detection time stamps registered into neighboring sensors,
so it can contribute more to the detection frequency
corresponding to the right road segment estimate.

5.3 Intersection Node Missing

Our prefiltering and graph matching algorithm works well
when nonintersection nodes are missing or out of function
in road segments. This is because our algorithm is based on
intersection nodes. However, when the missing of intersec-
tion nodes exists after the sensor deployment, the reduced
virtual graph will no longer be isomorphic to the real graph
and so the graph matching algorithm will not work. Thus,
the isomorphic graph matching cannot be performed to
localize the intersection nodes in the road network.

To deal with the graph matching for this nonisomorph-
ism between the real graph and the reduced virtual graph,
the subgraph matching can be investigated [24], [25].
However, in the case of the intersection node missing, it
may be very hard to perform the subgraph matching with
the sensor network topology (i.e., reduced virtual graph)
and the road network topology (i.e., real graph). This is
because the reduced virtual graph can contain a subgraph
that cannot be matched with any subgraph of the real graph
for the road network. Therefore, we leave this issue as
future work.

6 PERFORMANCE EVALUATION

As we explain in the introduction, there is no other solution
appropriate to our scenario for localization in road
networks. Instead of comparing our schemes with other
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Fig. 12. Localization of nonintersection nodes. (a) Virtual Graph for

Localization of Nodes. (b) Nonintersection Node Localization in Real

Graph.



state-of-the-art schemes, we investigate the impact of the
following five parameters on our localization scheme:

1. Maximum time synchronization error (�max),
2. Vehicle speed standard deviation (�v),
3. Vehicle interarrival time (1=�),
4. Detection missing probability (	), and
5. Duplicate detection probability (
).

Simulation uses the map of a real road network as shown
in Fig. 1a. Intersection nodes and nonintersection nodes are
deployed as shown in Fig. 1a. The system parameters are
selected based on a typical military scenario [37]. Unless
mentioned otherwise, the default values in Table 2 are used.
Our vehicle mobility model guarantees that the whole road
network is covered by vehicular traffic as follows: Most of
vehicles arrive at the perimeters of the road network and
randomly choose one destination placed at the perimeters,
moving toward the destination. When a vehicle arrives at
an entrance randomly chosen, it moves toward an exit
randomly chosen with a vehicle speed with a certain speed
deviation described in Table 2. To reflect the realistic traffic
model, the travel path is not the shortest path, but the path
with some detour according to the vehicle travel path
length model shown in Table 2.

To obtain high statistical confidence for the localization,

road traffic is measured during the simulation time of

10 hours. From this road traffic measurement, a matrix Mv is

created for the virtual topology as the average of 20 matrices

Mvs that are adjacency matrices of the virtual topology

created from the same measurement time, such as half an

hour. Note that the number of 20 is determined as the sample

size for the mean movement time per road segment. For

example, the sample size n is 15 for 95 percent confidence

interval where the movement time standard deviation � is

10 seconds and the margin of error m is 5 seconds; n ¼
ð1:96 � �=mÞ2 [34]. We use 20 for a more accurate estimate

instead of 15. Thus, Mv is the all-pairs shortest path

estimation matrix for the virtual topology.
In this section, we present two kinds of performance

evaluations as follows: First, we compare the aggregation-
based estimation method with the nonaggregation-based
estimation method for the estimation accuracy for road
segment length in Section 6.1. Second, we evaluate the

performance of prefiltering types that use the aggregation-
based estimation method and the same graph matching
algorithm in Section 6.2.

6.1 Performance Comparison between Road
Segment Estimation Methods

We compare the performance of localization schemes
according to the following two road segment estimation
methods:

1. Aggregation Method, and
2. Nonaggregation Method.

We define two performance metrics as follow: First, for the
estimation accuracy comparison, the Matrix Error Ratio (�) is
defined as the ratio of the sum of the entries of the absolute
difference of two matrices (i.e., Er and Ev) to the sum of the
entries of reference matrix (i.e., Er). Second, for the
localization accuracy comparison, the Localization Error
Ratio (�) is defined as the ratio of the number of incorrectly
localized sensors to the number of all sensors deployed on
the road network. After the road segment estimation based
on TDOD, we perform the prefiltering algorithm described
in Section 4.3 and the graph matching algorithm described
in Section 4.4 in order to evaluate the Matrix Error Ratio and
Localization Error Ratio.

For the maximum time synchronization error, as shown
in Fig. 13, the aggregation method outperforms the
nonaggregation method in that the Matrix Error Ratio of
the aggregation method is less than that of the nonaggrega-
tion method. This is why the aggregation method can give
more accurate localization than the nonaggregation method,
as shown in Fig. 14a. Note that the nonaggregation method
is more sensitive to random noises due to time synchroni-
zation error than the aggregation method, and so such
random noises make the Matrix Error Ratio the nonaggrega-
tion method have a random pattern according to the
maximum time synchronization error, as shown in Fig. 13.
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Fig. 13. Maximum Time Sync Error versus Matrix Error Ratio according

to aggregation type.

Fig. 14. The impact of maximum time synchronization error (�max).

(a) Aggregation Type versus Localization Error. (b) Prefiltering Type

versus Localization Error.



From Fig. 14a, it can be seen that our localization works
well in the case in which the maximum time synchroniza-
tion error is less than 0.25 seconds. We can claim that our
localization scheme can work in the real environment, since
the state-of-the-art time synchronization protocol for sparse
wireless sensor networks can give the accuracy at the
millisecond level [32].

For the vehicle speed deviation, as shown in Fig. 15a,
the aggregation method can outperform the nonaggrega-
tion method in terms of localization error ratio; note that
the aggregation method has no localization error up to the
vehicle speed deviation of 10 km/h. This speed deviation
greater than 10 km/h is the value out of the operational
region for our localization scheme, so the greater speed
deviation leads to the higher localization error ratio.
However, considering the real statistics [33] that the
vehicle speed deviation on four-lane roadways is
9.98 km/h, and the vehicle speed deviation on two-lane
roadways is 8.69 km/h, it can be claimed that our
localization can work well in the real environment, since
our localization scheme works with the vehicle speed
deviation less than 11 km/h.

For the vehicle interarrival time, as shown Fig. 16a, we
see that it does not affect the performance of our
localization scheme up to 140 seconds. The reason is that
our TDOD operation based on the aggregation method can
give accurate estimates for road segment lengths, as long as
the vehicle interarrival time is long enough to allow road
traffic to cover all of the road segments; note that when the
vehicle interarrival time is so short (e.g., 1 second), the time
stamps among sensors lose the correlation, so it is difficult
to estimate the distance among them through TDOD
operation. However, in fact, most people drive their
vehicles with the interarrival time longer than one second
for their safety, so we can claim that our localization works
under normal driving condition.

6.2 Performance Comparison among Prefiltering
Types

We compare the performance of localization schemes,
according to the following three prefiltering types:

1. RDE Prefilter. Prefiltering based on the Relative
Deviation Error described in Section 4.3.1,

2. MST Prefilter. Prefiltering based on the Minimum
Spanning Tree described in Section 4.3.2, and

3. APL Prefilter. Prefiltering based on both the Relative
Deviation Error and the Minimum Spanning Tree.

Each prefiltering type uses a matrix Mv created by the
aggregation-based road segment method. After the pre-
filtering step and the construction step of a reduced virtual
graph ~Gv ¼ ð ~Vv; ~EvÞ, the same graph matching algorithm
described in Section 4.4 is applied to the output matrix ~Ev in
order to evaluate the Localization Error Ratio.

From Figs. 14b and 15b, our localization with APL Prefilter
works well under reasonable, real environments in which the
maximum time synchronization error is less than 0.25 sec and
the vehicle speed deviation is less than 11 km/h. As we can
see in both figures, one missing of RDE Prefilter and MST
Prefilter cannot allow the accurate localization under the
reasonable, real environment. This is because the missing of
either RDE Prefilter or MST Prefilter cannot produce a correct
sensor network graph (i.e., reduced virtual graph) for the
graph matching with the road network graph (i.e., real
graph). As a result, we need to use the combination of these
two prefilters for filtering out path estimates.

For the vehicle interarrival time, as shown in Fig. 16b,
APL Prefilter has no localization error in the whole
interval from 20 to 140 seconds. However, as shown in
the figure, one missing out of two Prefiters makes a lot of
localization error in the same reason with the maximum
time synchronization error and vehicle speed deviation in
Figs. 14b and 15b.
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Fig. 15. The impact of vehicle speed deviation (�v). (a) Aggregation

Type versus Localization Error. (b) Prefiltering Type versus Localization

Error.

Fig. 16. The impact of vehicle interarrival time (1=�). (a) Aggregation

Type versus Localization Error. (b) Prefiltering Type versus Localization

Error.



6.3 APL Operational Region

We evaluate APL to see what range of time synchroniza-
tion error and vehicle speed deviation it works well in.
Fig. 17 shows the APL operational region that contains the
range of the maximum time synchronization error and the
vehicle standard deviation to allow a perfect localization
under the simulation environment given in Table 2. Our
localization scheme works well in the case in which the
vehicle standard deviation is less than 10 km/h, regardless
of the maximum time synchronization error from 0 to
0.07 sec. This threshold for the vehicle standard deviation
is close to the real statistics of the vehicle speed deviation
(e.g., 9.98 km/h for four-lane roadways) [33]. For the
vehicle interarrival time, our localization works well as
long as the vehicular traffic density (e.g., interarrival time
less than 140 sec) allows the road network to be fully
covered by vehicles for the distance estimation. Thus, the
vehicle speed deviation is one dominant factor of the
performance in APL.

Also, we investigated what effects the detection missing
and the duplicate detection have for the whole localization
accuracy by modeling the detection missing event and the
duplicate detection event as Bernoulli trial. Fig. 18 shows
the APL operational region that contains the range of the
detection missing probability (	) and the duplicate
detection probability (
) to allow a perfect localization
under the simulation environment given in Table 2. The
result is that our localization scheme has no localization
error under the simulation setting in Table 2 with the
detection missing probability 	 from 0 to 0.25 at each
sensor and with the duplicate detection probability 
 from
0 to 1 at each sensor, respectively. Thus, it can be claimed
that our localization scheme can work in the real road
networks with noises and the detection missing probability
is another dominant factor in APL.

7 CONCLUSION

In sparse road sensor networks, sensors cannot effectively
obtain pairwise ranging distance or connectivity information
for the purpose of localization. To address this issue, this
work introduces an autonomous passive localization scheme,
called APL, using only binary sensors. Our APL system

performs a localization using vehicle-detection time stamps
along with the road map of the target area. The key idea is to
use the statistics of vehicle-detection time stamps to obtain
distance estimates between any pair of sensors on roadways
to construct a virtual graph, which is then matched with the
topology of road map, in order to identify where sensors are
located in the target road network. We observe that path
estimates are less accurate than edge estimates, therefore, it is
necessary to conduct prefiltering before graph matching can
be successfully conducted. Through both the outdoor test
and simulation, we show that our localization scheme is
robust to realistic setting, considering the time synchroniza-
tion error, vehicle speed deviation, and different vehicular
traffic intensity along with sensor detection missing prob-
ability and duplicate detection probability. Our APL system
shows the encouraging results in the localization for the road
network fully covered by vehicular traffic for the distance
estimation along with one vehicle speed distribution. As
future work, we will investigate the handling of intersection
node missing in the case where some sensors are missing at
intersections in the road network.

APPENDIX A

VALID EDGE SELECTION BASED ON MINIMUM

SPANNING TREE

Theorem A.1. Suppose that M is an n� n matrix, and Mði; jÞ
is the shortest path length from node i to node j in a graph G
that has n nodes. Let A be the set of all edges in graph G.
Suppose that M 0 is another n� n matrix, and M 0ði; jÞ is the
shortest path length from node i to node j in another graph G0

that has n nodes such that G0 
 G. Let A0 be the set of all edges
in graph G0 such that A0 
 A. If Mði; jÞ is the smallest entry
that satisfies Mði; jÞ < M 0ði; jÞ such that Mði; jÞ 2 A and
Mði; jÞ 62 A0, then Mði; jÞ must be an edge length.

Proof. We prove the claim using contradiction. Let G ¼
ðV ;EÞ such that V is the node set of G, and E is the edge
set of G. Let euv be an edge whose endpoints are u and v
for u; v 2 V ðGÞ. Let ek be the kth shortest edge in the edge
set A where A ¼ EðGÞ in terms of edge length. Let lðeiÞ
be the length of edge ei.
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Fig. 17. APL operational region for vehicle speed deviation and

maximum time synchronization error.
Fig. 18. APL operational region for detection missing probability and

duplicate detection probability.



Suppose that Mði; jÞ is the length of the shortest path
between nodes i and j rather than the length of the edge
between nodes i and j. It must be the sum of more than
one edge length in A as follows:

Mði; jÞ ¼
Xm

k¼1

lðekÞ; ek 2 A: ð9Þ

Similarly, M 0ði; jÞ must be the sum of more than one
edge length in A0. We know that Mði; jÞ �M 0ði; jÞ for all
i; j 2 V ðGÞ, since A0 
 A. From the given condition
Mði; jÞ < M 0ði; jÞ, the following two cases for ek are
considered:

The first case. If there exists an ek for k ¼ 1; . . . ;m in
(9) such that 1) ek 62 A0 and 2) the entries Mðu; vÞ and
M 0ðu; vÞ corresponding to the endpoints of the edge ek ¼
euv satisfy Mðu; vÞ < M 0ðu; vÞ, then Mðu; vÞ < Mði; jÞ.
This contradicts the minimality of Mði; jÞ such that
Mði; jÞ 2 A and Mði; jÞ 62 A0.

The second case. If there exists no ek for k ¼ 1; . . . ;m
in (9) such that 1) ek 62 A0 and 2) the entries Mðu; vÞ and
M 0ðu; vÞ corresponding to the endpoints of the edge ek ¼
euv satisfy Mðu; vÞ < M 0ðu; vÞ, then this means that A0 has
the same edges ek for k ¼ 1; . . . ;m as A has. Thus,
Mði; jÞ ¼M 0ði; jÞ, since A0 can construct the shortest
i; j-path with the same edges as A has. This contradicts
the condition Mði; jÞ < M 0ði; jÞ.

From these two cases, it is concluded that Mði; jÞmust
be an edge length. tu

APPENDIX B

GRAPH MATCHING INDEPENDENT OF VEHICLE MEAN

SPEED

Theorem B.1. Let P , Er, and ~Ev be n� n real matrices. If P is

an n� n optimal permutation that minimizes the following

2-norm square:

P ¼ arg min
P̂
kEr � PÊvPTk2

2; ð10Þ

then, P is also an n� n optimal permutation that minimizes

the following 2-norm square:

P ¼ arg min
P̂
kEr � PcÊvP

Tk2
2; 8c 2 IRþ: ð11Þ

Proof. Let Er ¼ ðrijÞ and ~Ev ¼ ðvijÞ for 1 � i; j � n. Let the

permutation function �ðxÞ be a map corresponding to the

optimal permutation matrix P

� : x 2 f1; . . . ; ng ! y 2 f1; . . . ; ng; ð12Þ

that is, y ¼ �ðxÞ. Thus, the 2-norm square in (10) can be

represented using the summation and permutation

function as follows:

�ðP;Er; ÊvÞ ¼ kEr � PÊvP
Tk2

2 ¼
Xn

i¼1

Xn

j¼1

ðrij � v�ðiÞ�ðjÞÞ2:

ð13Þ

Also, the 2-norm square in (11) can be represented as

follows:

�ðP;Er; cÊvÞ ¼ kEr � PcÊvP
Tk2

2

¼
Xn

i¼1

Xn

j¼1

ðrij � cv�ðiÞ�ðjÞÞ2:
ð14Þ

Let ��ðxÞ be the arbitrary permutation function
corresponding to an arbitrary permutation matrix �P .
Since P is an optimal permutation, the following
inequality always holds:

�ðP;Er; ÊvÞ � �ð �P;Er; ÊvÞ � 0;

)
Xn

i¼1

Xn

j¼1

ðrij � v�ðiÞ�ðjÞÞ2 �
Xn

i¼1

Xn

j¼1

ðrij � v��ðiÞ��ðjÞÞ2 � 0;

)
Xn

i¼1

Xn

j¼1

ð�2rijv�ðiÞ�ðjÞ þ 2rijv��ðiÞ��ðjÞÞ � 0:

ð15Þ

In the same way, from (14), if we take the difference

between two 2-norm squares forP and �P , thenP is also an

optimal permutation matrix of (14) due to (15) as follows:

�ðP;Er; cÊvÞ � �ð �P;Er; cÊvÞ

¼
Xn

i;j

ðrij � cv�ðiÞ�ðjÞÞ2 �
Xn

i;j

ðrij � cv��ðiÞ��ðjÞÞ2

¼ c
Xn

i;j

ð�2rijv�ðiÞ�ðjÞ þ 2rijv��ðiÞ��ðjÞÞ � 0; 8c 2 IRþ:

ð16Þ

From Theorem B.1, as long as all of the road segments
have the same constant scaling factor c for their mean
speeds, our localization algorithm works well regardless
of the distribution of the vehicle mean speed during
traffic measurement. tu
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