A Framework for Managing User-defined Security Policies to
Support Network Security Functions

Eunsoo Kim
Sungkyunkwan University
Republic of Korea
eskim86@skku.edu

Jaehoon (Paul) Jeong
Sungkyunkwan University
Republic of Korea
pauljeong@skku.edu

ABSTRACT

Network Functions Virtualization (NFV) and Software Defined Net-
working (SDN) make it easier for security administrators to manage
security policies on a network system. However, it is still chal-
lenging to map high-level security policies defined by users into
low-level security policies that can be applied to network security
devices. To address this problem, we introduce a framework for
effectively managing user-defined security policies for network
security functions based on standard interfaces that are currently
being standardized in an IETF working group. To show the feasibil-
ity of the proposed framework, we implemented a prototype based
on the RESTCONF protocol and showed that the proposed frame-
work can be applied in real-world scenarios for network separation,
DDoS mitigation and ransomeware prevention.

CCS CONCEPTS

» Networks — Network architectures; Middle boxes / network ap-
pliances; Network management;

KEYWORDS

Security management; Security policy; NSF;

ACM Reference Format:

Eunsoo Kim, Kuyju Kim, Seungjin Lee, Jachoon (Paul) Jeong, and Hyoung-
shick Kim. 2018. A Framework for Managing User-defined Security Policies
to Support Network Security Functions. In Proceedings of The 12th Inter-
national Conference on Ubiquitous Information Management and Commu-
nication (IMCOM ’18), Jennifer B. Sartor, Theo D’Hondt, and Wolfgang De
Meuter (Eds.). ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3164541.3164569

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IMCOM ’18, January 2018, Langkawi, Malaysia

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6385-3/18/01...$15.00
https://doi.org/10.1145/3164541.3164569

Kuyju Kim
Sungkyunkwan University
Republic of Korea
kuyjukim@skku.edu

Seungjin Lee
Sungkyunkwan University
Republic of Korea
jine33@skku.edu

Hyoungshick Kim
Sungkyunkwan University
Republic of Korea
hyoung@skku.edu

1 INTRODUCTION

Defining security policies for a network system is a difficult and
complicated task that often requires deep knowledge of a particu-
lar vendor’s protocols and network commands. This has been the
biggest challenge for system administrators who are responsible
for managing network systems. This problem is further amplified
for network environments with Network Security Functions (NSFs)
provided by multiple vendors with proprietary interfaces [11]. In
many situations, NSFs can be used to achieve security goals such
as integrity, confidentiality and availability to protect a network
system by detecting malicious traffic and/or reducing the impact of
cyber attacks on the network system [7]. In practice, however, it is
very cumbersome to manage and enforce various security policies
and configurations on NSFs due to various business requirements
and the complexity of security practices for satisfying those require-
ments. The detailed challenging issues are as follows:

First, it is not easy to consider new security requirements and
the corresponding security rules in a timely way in response to
adaptive and sophisticated attacks which are evolved over time.
Second, the cost of managing security policies is likely to increase
because multiple vendors’ network devices and security solutions
can typically be used in a mixed way for a network system. In
general, each vendor uses its own proprietary interface, which
makes system administrators harder to set up vendor-specific rules
and configurations. Third, large companies generally require very
complicated security requirements for various users and devices,
which may produce complicated security rules.

To address those issues, several architectures were introduced
based on Software-Defined Networking (SDN) and Network Func-
tions Virtualization (NFV). For example, the Internet engineering
Task Force (IETF) Interface to Network Security Functions (I2NSF)
working group aims to define and implement standard interfaces
for controlling and managing NSFs. This standardization defines
an architecture and interfaces for network security services using
SDN and NFV. However, it is still unclear how (relatively compli-
cated) high-level security policies defined by users can be mapped
into low-level security policies for network devices, and then the
low-level security policies can be configured on those devices.

In this paper, we propose a framework to effectively translate
high-level security policies for users into low-level security poli-
cies for network devices. To show the feasibility of the proposed

https://doi.org/10.1145/3164541.3164569
https://doi.org/10.1145/3164541.3164569
https://doi.org/10.1145/3164541.3164569

IMCOM ’18, January 2018, Langkawi, Malaysia

framework, we also implement a prototype to support RESTCONF
protocol (RFC 8040 [2]), which is an HTTP-based protocol, provid-
ing a programmatic interface to access data defined in YANG [3].
Note that YANG is a data modelling language for network con-
figuration. We also discuss how the proposed architecture can be
applied in real-world situations for network separation, DDoS at-
tack mitigation and ransomware prevention.

The rest of the paper is organized as follows. Section 2 provides
some background knowledge for understanding the proposed archi-
tecture. Section 3 presents the proposed framework. Section 4 de-
scribes user-defined policies in the proposed framework. Section 5
explains the details of our prototype to implement the proposed
framework. Section 6 introduces three important real-world sce-
narios where the proposed framework can effectively be applied
to. Section 7 discusses the limitations of our work, and the related
work is summarized in Section 8. Finally, our conclusion and future
work are given in Section 9.

2 BACKGROUND

In this section, we provide a brief overview of NFV, NSF and REST-
CONF protocol.

2.1 Network Function Virtualization (NFV)

NFV allows network functions to be performed on virtual machines
in a cloud infrastructure rather than dedicated physical devices.
The popularity of NFV is growing for network operators who want
to deploy new network services in a flexible manner. NFV is a key
enabling technology for providing customized network services
in a flexible and scalable manner by providing network functions
through software implementation rather than hardware resources.
In the virtual environment, the functionality of hardware compo-
nents can be easily emulated, and multiple virtual functions can
share available resources and run simultaneously on a virtualized
infrastructure.

2.2 Network Security Function (NSF)

NSF is a security function used to ensure integrity, confidentiality,
or availability of network communication systems by detecting sus-
picious or malicious network activities and blocking them. Because
NSFs should be deployed in increasingly diverse environments, var-
ious business and security requirements should also be considered.
Users could consume network security services enforced by NSFs
hosted by one or more providers, which may be their own network
systems and services. Similarly, service providers may offer their
customers network security services that are enforced by multiple
security products and functions from different vendors, or open
source projects. NSFs can be provided by both physical and vir-
tualized infrastructures. Without standard interfaces to monitor
and control the behaviors of NSFs, it is not easy for security ser-
vice providers to automate various security services with various
security functions from multiple vendors.

2.3 OpenDaylight & Open vSwitch

OpenDaylight first started as a collaborative project hosted by the
Linux Foundation. The goal of the project is to promote SDN and
NFV. The OpenDaylight software is written in Java programming

Eunsoo et al.

language [15]. It is a modular open platform for customizing and au-
tomating networks of any size and scale. The OpenDaylight project
arose out of the SDN movement, with a clear focus on network pro-
grammability. It was designed from the outset as a foundation for
commercial solutions that address a variety of use cases in existing
network environments. The OpenDaylight software architecture
defines application creation and interaction patterns along with
underlying application services (e.g., message routing, formatting
and data storage) and has ultimately lead to new development tools
for an environment enabling open source collaborations [16].

Open vSwitch is an open-source implementation of a distributed
virtual multilayer switch [19]. The main purpose of Open vSwitch
is to provide a switching stack for hardware virtualization envi-
ronments, while supporting multiple protocols. Open vSwitch is
designed to enable network automation through programmatic
extensions, while supporting standard management interfaces and
protocols such sFlow, Command Line Interface (CLI) and NetFlow.
In addition, Open vSwitch is designed to support switching func-
tionality across multiple physical servers by enabling the creation
of cross server switches in a way that abstracts the underlaying
server architecture, similar to the VMware vNetwork distributed
vswitch or Cisco Nexus. Open vSwitch can operate as both SDN
running within a virtual machine, and the control stack for dedi-
cated switching hardware. As a result it has been ported to multiple
virtualization platforms as switching chipsets [20]. Open vSwitch
has also been implemented into various cloud computing software
platforms and virtualization management systems, including Open-
Stack and OpenNebula.

2.4 RESTCONF protocol

RESTCONTF protocol is an HTTP-based protocol that provides a
programmatic interface for accessing data defined in YANG data
model language [3]. Similar to NETCONF [5], RESTCONF sup-
ports GET, PUT, POST, DELETE operations and every request
and response data can be in XML or JSON format. XML has a
structure according to both YANG by XML-YANG, and JSON by
JSON-YANG. RESTCONF provides a set of Create, Read, Update
and Delete (CRUD) operations on conceptual datastores containing
YANG-defined data, which are compatible with NETCONF. A REST-
CONTF server enumerates YANG modules that can be supported
under “/restconf/modules” in the top-level API resource type, using
a structure based on the YANG module capability URI format.

2.5 Network Access Control (NAC)

There are many different network tenants within an organization.
The tenants can be various departments such as Human resources,
Finance, Legal and etc. These network tenants or departments
may wish to manage their own security policies due to regulatory,
compliance or business reasons.

NAC is a solution for controlling and controlling access in the
network. NAC has many functions such as authentication and
verification. When a client, such as a new device, requests access
to a network, NAC offers authentication and verification methods
to identify it. Furthermore, Role Based Access Control (RBAC) is
possible using NAC in order to control access to the network based
on each client’s role.

A Framework for Managing User-defined Security Policies to Support Network Security FUMOM ’18, January 2018, Langkawi, Malaysia

There are several popular opensource tools of NAC, such as
packetfence, opennas and freenac [17]. If a network is divided into
one with the Internet access and the other without the Internet ac-
cess, an system administrator may give wrong permission, thereby
causing confusion in the network. This kind of problems can be
amended by using NAC equipment in the form of NSFs.

When NAC is first installed into a network, it collects IP and
NIC (MAC) addresses of every device that is connected within
this network, and maps each IP address with the corresponding
NIC address. If a device with an IP or NIC address, which is not
registered within the mapping table, tries to connect to the network,
the NAC can detect this. With this method, a detected device can be
blocked so that the device cannot attempt DNS and DHCP access.

3 PROPOSED FRAMEWORK

In this section, we propose a framework for translating user-defined
high-level policies into low-level policies for NSFs in a flexible
manner. The modeling of a user-defined policy is based on the
information model for the client interface (called Consumer-facing
interface) [21] [14].

A client interface is used to enable different users of a given
NSF system to define, manage and monitor security policies for
specific flows within an administrative domain. The location and
implementation of these policies are irrelevant to the client. One
example of the client interface could be an enterprise network
administrators and management systems that need to request their
provider network to enforce specific policies for NSFs for particular
flows. Another example is an IoT management system sending
requests to the underlay network to block flows that match a set of
specific conditions. The main idea behind this model is to consider
the corporate network as organizations. Each organization has
its own abstract levels (subjects, actions, events, conditions and
objects), and the hierarchy for the organizations. These abstract
levels are an important step for the model. Our main interest here is
to define the security policies associated with each NSF and policy
type.

Our proposed framework plays a role as a middleware between
the user client side and the network security function instances,
that is, from the generation of a high-level policy using the client
interface to the translation and parsing in order to perform the
successful deployment and enforcement of low-level policy to the
NSFs.

Figure 1 shows the general architecture of our proposed frame-
work consisting of three main components in order to generate
high-level user policies, parse them, and translate them into low-
level policies. We name the three components to be policy generator,
policy converter, and policy parser, and then describe their roles in
the subsections below.

Client
‘Web UL Yang/JSON
(User) "y
Policy
Generator
JP \
RESTCONF
Security Management System y Y
Security controller A 4
JSON/XML
Policy Policy 'y
Converter Parser
N
NETCONF
[Network Security Functions
NSF1...n

Figure 1: Proposed framework for security policy manage-
ment.

3.1 Policy generator

The policy generator will generate high-level user-defined policy
according to the needs of a system administrator regardless of the
vendors providing different types of security function capabilities.
Although it is difficult to implement one-to-one mapping of a high-
level policy to low-level policy, it is possible to restrict and simplify
the expressions used by providing a simple user friendly interface.

3.2 Policy converter

If a user, typically a system administrator defines a security rule
using the user interface, the defined rule needs to have a structured
form in order to be forwarded to the final stage of the policy trans-
lation. The policy converter is responsible for translating a general
string of a policy into intermediate language code such as XML
script.

3.3 Policy parser

The policy parser is responsible for importing the user-defined
policy generated by the policy generator. The imported policy is in
an intermediate form (i.e., a XML document) converted by the policy
converter as described in the previous stage. After completing the
import process successfully, the policy parser then creates security
rules for a network security function by matching each data within
the XML document.

The delivery of the high-level policy defined by a system admin-
istrator is done through RESTCONF protocol. When JSON/YANG
format policy is generated at the policy generation step, an HTTP
request will be sent to a RESTCONF server, and then the policy
converter and parser will start converting and parsing the policy
into an appropriate format, respectively.

IMCOM ’18, January 2018, Langkawi, Malaysia

4 USER-DEFINED POLICY

In this section, we discuss the process of generating user-defined
policies in the proposed framework. Before discussing this process
in detail, we need to define who the user is. A user is a role that is
assigned to an NSF component that contains functions to provide
information to other components. Our interface can be an example
of providing rules to other network security components. The user-
defined policy needs users who take the role of either an operator,
end-user or application developers to represent multiple types of
our event-condition-action based rules for network traffic selection
and configuration of security policies.

In order to effectively generate and enforce user-defined policies,
we take a policy-specification-based approach. A policy specifi-
cation language is used to formalize the intent of the user into a
form that can be read and interpreted by machines. We consider
XACML to express access control policies as XML. XACML is an
XML specification for expressing policies for information access
over the Internet, and the language provides XML with a sophisti-
cated access control mechanism that enables the initiator not only
to securely browse SML documents but also to securely update each
document element.

The client interface acts as the brain in our proposed frame-
work which is responsible for validating to a security policy, while
maintaining the consistency and accuracy of the security policy.
Furthermore, it is responsible for managing the priorities to avoid
permission conflicts between the policies, and to safely enforce
those high-level user-defined policies in a user-friendly manner.
Appendix A shows the web-based interface example to generate a
user-defined policy for NAC.

The high-level policies defined by users should be delivered to
a security controller in the proposed framework. The communi-
cation module and the protocol between the client interface and
the security controller is based on the RESTCONF, and the server
and client are developed based on the python package called JET-
CONF. JETCONEF is an implementation of the RESTCONF protocol
written in Python. It provides HTTP/2 over TLS, certificate-based
authentication of clients, JSON data encoding, and per-user can-
didate datastores with transactions. We particularly modified the
client and server codes in order to send HTTP requests through
PHP and receive the corresponding responses in XML. Because the
JETCONTF package does not provide JSON-to-XML translation, we
developed an XML parser to translate JSON formatted data strings
into an XML format. The overall process is as follows:

1. Generate a user-defined policy from a web-based client inter-
face. (This step involves creation of a JSON formatted file that will
be stored in a Web server.)

2.Send an HTTP request to a RESTCONF server, which will then
read in the JSON files based on the pre-defined YANG structure.

3. Perform necessary actions, either configuration or operation,
based on the type of YANG files.

4. Parse the JSON/YANG file into XML document and enforce
the new policy to the NSFs, and display in a well-formatted XML.

Eunsoo et al.

5 IMPLEMENTATION

In this section, we describe the implementation of the necessary
components that consists the proposed framework, and show its
feasibility by showing how it can be applied to NAC.

module: client-interface—nac
+——rw client-interface-nac
+==rw threat-prevention
| +--rw threat-feed+ [threat-feed-id]
| +——rw threat-feed-id uint16
+==rw policy-endpoint-groups
| +—-rw user-group+ [user-araup-id]
| +——rw user-group-id uintlg
+——rw security-policy-instance
+——ry paolicy-rules [palicy-rule-id]
+==rw policy-rule-id uint16
+=—rw nane? string
+——rw date? vang ‘date—and-t ime
+==rW source? -» .../threat-feed-id

+——tw destination? -» ... user-group-id
+——rw event? == ... event-id
+——rw condition? -» ... fcondition-id

+——rw action? -» ... faction-id
+=—rw exception? boolean

+——rw exception-detail? string

+——rw action+ [action-id]

+=—=rw action-id string
+——tw npamne? string)
+=—rw date? vang ‘date-and-time

+=—FW primary-action? string
+——rtw secondary-action? string
+-—-ry precedence+ [precedence-id]
| +—-rw precedence-id string

| +—rw rule-exist? boolean
+——ry gvent+ [event-id]
+——tw event-id string
+——rw security-event? string
+=—rw threat-map? string
+——rtw enable? boolean

+=—ry condition+ [condition-id]
+=—rw condition-id string
+——rw services [service—id]

| +--rw service-id uint1g

| +--rw name? string
+——ry nac-source+ [source-id]
+——ry source-id uint16

| +—-rw source-id-ip? inet tipwd-prefix
| +#--rw source-id-mac? vana:mac-address
+——ry nac-destination+ [destination-id]
+——ry destination-id uint16
+——ry destination-id-ip? inet ipwd-prefix
+——ry destination-id-mac? wvana:mac-address
+=—ry policy-instance+ [policy-instance-id]
+——rw policy-instance-id string
+——tW namne? string
+==ry date? vang ‘date-and-time
+=—rw rules? > .../policy-rule-id

Figure 2: YANG data tree for NAC.

5.1 Client interface & RESTCONTF client

Since our proposed framework uses a web-based user interface as a
client interface to generate a user defined high-level policy, we first
created a web server based on an Apache HTTP server so that the
web interface can send HT TP requests. We also created a virtual
network topology using Mininet, and used OpenDaylight to control
the network traffic. We used RESTCONTF protocol in order to deliver
a generated high-level security policy to a security controller.

In our case, the security controller not only monitors and man-
ages network flows but also acts as a RESTCONF server. For suc-
cessful communication between the web client and the security
controller through RESTCONF, we created a web client in PHP
that generates a security policy and stores it as a JSON file. It then

A Framework for Managing User-defined Security Policies to Support Network Security FUMOM ’18, January 2018, Langkawi, Malaysia

makes URI calls based on HTTP request and sends JSON format
policy file to the RESTCONF server.

As soon as the server received the HTTP request, it starts con-
verting the JSON format data and translates it into appropriate rule
format. In order to setup the RESTCONEF client and server environ-
ment, we leveraged an open source python package called JETCONF.
JETCONF is an implementation of the RESTCONF protocol written
in Python. It provides, HTTP/2 over TLS, certificate-based authen-
tication of clients, JSON data encoding, and Per-user candidate
datastores with transactions and support for NACM. The client
interface generates a JSON file according to the YANG structure.

Figure 2 shows an example YANG data tree for generating a
high-level policy. The security policy is an Event-Condition-Action
(ECA) based policy, which is made up of three Boolean clauses: an
event clause, a condition clause, and an action clause. A Boolean
clause is a logical statement that evaluates to either true or false. In
our NAC example, an unidentified device connected to a network
is the event, MAC address matching is the condition, and either
deny or allow is the action. This ECA-based policy is very general
and easily extensible, and can avoid potential constraints that could
limit the implementation of security capabilities.

<client-interface-nacisecurity-policy-instance>
<precedence
<precedence-id=0</precedence-idz
<rule-exist>false</rule—exist>
</precedence>
<gyent>
<event-ids1</event-id>
<gecurity-event>Unidentified-connect ion</security—event>
<mac-matchetrue</mac-natch>
</event>
<condition>
<condition-id>!</condition-id>
<geryvicex
<name>MiC—exanp le</nane>
<garvice-id=1</service-id=
</service»
ANac-s0Urces
<gource-id>1</source—id>
<gource-id-mac>Bh A4 AL AR AL 8A< Source-id-nac
</nac-source>
</condition>
<action>
<act ion—id»1</action-id>
<name>network separation</name>
<primary-action>drop</prinary-action>
<gecondary-act i onxloa</secondary—act ion>
</action>
<policy-rulex>
<policy-rule-id=1</policy-rule-id>
<name>nac—paol icy-exanple</nane>
<date>2017-09-15T18:00:00Z</dat e>
<gvent>1</event >
<condition»1</condition>
<act ion>1</act ion>
<source>Bi tBA:BA BA:BABA</s0urce>
<dest ination>192.168.1.0/24</dest inat ion>
</policy-rulex
<policy-instances>
<paolicy-instance-id>1</policy-instance-id>
<name>nac—paolicy-exanple</nane>
<date»2017-09-15T18:00:00Z</date>
<rules»1</rules>
</policy-instance>
</client-interface-nac:security-policy—instances=

Figure 3: Example of XML documents for NAC.

5.2 RESTCONTF server

We also implemented the RESTCONF server using JETCONF. The
RESTCONEF server needs a start-up configuration with the directory

path of YANG modules and a JSON file acts as a datastore storing a
user-defined high-level policy. When the RESTCONF server starts,
it first conducts YANG validation of the YANG modules in the
directory path. Once the validation process and authentication
of client are completed successfully, the RESTCONF server starts
handling client requests.

For GET methods to get a user-defined high-level policy, the
RESTCONTF server returns the corresponding JSON formatted pol-
icy data stored in the datastore. For other methods, such as PUT
or UPDATE, the RESTCONF server first validates and confirms
whether the fields of request contain the valid data type according
to the requested YANG module. If the validation of client request
is completed successfully, the requested inputs are reflected to the
policy data stored in datastore.

Finally, the JSON format policy data (which is based on YANG
structure shown in Figure 2) is translated into a low-level policy
rule, and then the rule, which is comprehensible to NSF, is passed to
an NSF. The JSON formatted file is converted into the XML format
document, which is then parsed into an appropriate policy rule by
the policy parser component in the server. An example of XML
documents for NAC is shown in Figure 3.

5.3 Implementation example: NAC

We describe how we set up an NAC environment using the imple-
mentation above. The security controller, which acts as a REST-
CONTF server in our case. In order to separate the internal server
from the public network, NAC has a MAC table to check the IP
and MAC addresses of the sources for the incoming packets. If a
MAC address is not registered, it is initially blocked and needs the
approval from NAC. When a new device is registered in the public
network, the security controller compares the MAC address of the
new device with those registered in the MAC table of the internal
network and vice versa.

If the MAC address is not found within the MAC table, then it is
considered to be an unauthorized access and sends alarm messages
to the system administrator. The system administrator generates a
user-defined high-level policy to the security controller, which then
converts the policy into a low-level policy rule, such as an Openflow
rule. As soon as the rule is applied, the system administrator can
keep track of the unauthorized access by triggered alarms, and
block it permanently if necessary.

Figure 4 shows the NAC environment set up and shows how
the security policy generated by the system administrator can be
applied to it. As it can be seen from the figure, both public and
internal networks have NAC as NSFs, and they can be controlled
by a security controller. Assuming that the host 4 with IP address
172.16.2.1, which has BA (AA:AA:AA: BB:BB:BB) as its MAC ad-
dress tries to connect to the public network, the security controller
compares it with the MAC addresses in the MAC table stored in
the NAC of the internal network.

If the MAC address of the device is found out to be a device reg-
istered as an internal network device only, then an alarm message
is sent to the system administrator. The system administrator then
generates a high-level security policy and sends it to the security
controller. The security controller then converts the high-level pol-
icy into a low-level policy, similar to that of a firewall policy, which

IMCOM ’18, January 2018, Langkawi, Malaysia

- .
s

Eunsoo et al.

s
/

' 192.168.1.0/24

172.16.2.0/24

Security Controller Q

NSF NAC1

NSF NAC2

SDN Controller

NSF NACT
IP MAC
AaREE,
|1||2||3|-|4. 1.1 AA
| | | |
B2y B¢ E=e"ES0 " 1.2 AB
IP MAC| | IP [mAC| | 1P MAC|: P MAC|g 13 AC
11 AA] [12]AB] [13|AC |27 [BA |m
Internet === o

I
]

NSF NAC2
P | MAC
21 BA [ii
n - . .
22 | BB | wEmo B0 E=e0 E=e
2.3 BC : IP MACH 1P MAC| | IP MAC] | IP IMAC]
i2.1 BA 22| BB 2.3 | BC 24| BD
24 | 80 | Ymmm Intranet

Figure 4: NAC environment.

can be enforced to the Open vSwitch through an SDN controller
[22]. The Open vSwitch finally blocks the network traffic.

The XML structure follows the YANG tree, and therefore follows
the same namespace. <precedence> is to check whether the same
rule exists or not. <event>, <condition>, and <action> represents
the security event and triggers the evaluation of the policy rule,
the condition for the action to be applied or not, and the action
which will be applied eventually if the <event> happens while
the <condition> is true. <rule> is the rule of the policy, and refers
to <event>, <condition> and <action> with <source> and <des-
tination> information of the connected device to create a single
rule. Lastly, <policy instance> contains the policy information and
the rules. An example translated security policy rule is shown in
Table 1.

6 CASE STUDIES

Our framework and user interface is designed to react to possible
security attacks. This section shows the procedure of the secu-
rity attack mitigation scenarios, such as DDoS mitigation. We also
show how our proposed method can be implemented for separating
networks.

6.1 DDoS mitigation

DDoS attacks have been a big challenge for many organizations as
the impact of DDoS attacks is huge. Detecting DDoS attacks can be

achieved using rules generated by our framework in accordance
with our policy YANG model.

DDoS attacks can be detected using the rules generated by our
framework. One possible mitigation for the DDoS attack is by set-
ting a threshold for the network traffic, however, there are other
methods such as signature-based detection [1]. There are several
tools that are used for performing DDoS attack, such as TFN, TEN2K,
Trin00 and Stacheldraht. Those DDoS attacks are performed us-
ing the tools mentioned above to generate distinguishable packets,
so they can be easily tracked using the rules generated by our
framework.

Those DDoS attacks (e.g., HTTP GET flooding, SYN flooding
and NTP amplification attack) can be easily mitigated by a firewall
if the service ports are known. However, this is not usually the
case, so system administrators should set appropriate thresholds
and monitor the network traffic to prevent such a denial of service.

6.2 Ransomware prevention

Ransomware is a software that encrypts some files and asking for
money or Bitcoin as the cost of encryption key. The ransomware
attacks have existed since the early 2000s, but lately, many new
ransomware attacks that cause many problems socially are being
produced and distributed newly. The mechanisms to distribute the
ransomware use Drive by download, E-mail or P2P usually [8].
Ransomware are first distributed through drive-by-download,
spam e-mail or P2P. When a user executes a malware, it connects

A Framework for Managing User-defined Security Policies to Support Network Security FUMOM ’18, January 2018, Langkawi, Malaysia

Table 1: Example of Low-level Security Policies at an Open vSwitch

MAC src MAC dst IP Src IP Dst TCP sport | TCP dport | Action
BA:BA:BA:BA:BA:BA * * * * * Drop
AA:AA:AA:AA:AA:AA | FF.FF.FF.FF.FF:FF * * * * Drop
* * 192.168.1.5 192.168.1.100 * 22 Accept
* * 192.168.1.0/24 * * 22,3389 Drop
* * * 192.168.1.100 * 389 Accept
* * * 192.168.1.100 * 135-139,445 | Accept
* * * * * 135-139,445 | Drop
* * 192.168.1.0/24 * * * Accept

to a distribution website and downloads a ransomware. Once the
download is complete, the ransomware is executed successfully,
and then it connects to a C&C server to encrypt the user files. In
general, most ransomware operate through the C&C servers.

A system administrator can use a blacklist to block C&C servers.
The blacklist contains the list of C&C server URLs. This method
is much more effective when compared to the method using the
URLs of a ransomware distribution website. This is because an
attacker may use many different distribution websites, whereas the
number of C&C servers is small. Moreover, there are various kinds
of websites that offer ransomware related information, such as
https://ransom-waretracker.abuse.ch/blacklist/, so a blacklist based
on the URL information given in this website may significantly
help mitigating ransomware attacks [4]. A high-level-policy may
leverage this blacklist to create a rule to shield against such attacks,
and a security controller may translate and enforce the low-level-
policy for the NSFs.

7 LIMITATIONS

Although we provide a user-friendly web-based client interface to
create simple high-level policies, it is not truly human language
based policy translator. A high-level policy should be generated
by involving natural language processing, however, this is out of
scope in this paper. Natural language processing is concerned with
the interactions between computers and human languages, and it is
concerned with programming computers to fruitfully process large
natural languages. The challenges in natural language processing
frequently involve understanding, generation, connecting, machine
perception, or the combination of the human language, which are
not currently considered in this paper.

There are a numerous number of different vendors so it is not
easy to develop a system to support all vendors. However, it is
possible to develop a separate registration interface to register
capabilities of each vendor’s NSF to flexibly adjust the system when
it is necessary to convert from a vendor to another.

8 RELATED WORK

Liu et al. [13] proposed a tool called EASYACL that generates the
Access Control Lists (ACLs) rules automatically from natural lan-
guage descriptions. The ACL is a list of permissions of access to
a specific network asset. Thus, a mistaken configuration of ACL
causes the network performance degradation as well as the network
security vulnerabilities. The configurations of network properties,

especially ACL rules, are considered as a difficult task disturbing
many end users, because of the many options contained in con-
figuration commands and the platform dependency of rule syntax.
The EASYACL translates the end users’ natural language descrip-
tions to ACL configuration commands with a rule-based natural
language processing method, so that the end users easily configure
ACL rules and the system administrators troubleshoot the ACL
configuration errors. Our framework is motivated by the EASYACL,
but we considered the network configuration rules in the SDN/NFV
environment.

Similarly, Hassan et al. [10] suggested a framework extending
the Organization Based Access Control (OrBAC) model for automat-
ing the process of translation of high-level security policy into a
low-level security policy. The framework however did not consider
the SDN/NFV environment. We developed a YANG [3] data model
based on SUPA [9] used for the high-level policies in the [2NSF
(Interface to Network Security Functions) architecture, and in our
work, we suggested a framework for translating user-defined secu-
rity policies into low-level policies in NSF by extending Hassan et
al’s framework.

The work for standardization of the architecture to control NSF
instances has been actively performed. I2NSF [12] and ETSI NFV
[6] have been defining a framework for controlling NSF instances in
a virtual environment using NFV so as to allow end users to define
their own security policies. Furthermore, Oh et al. [18] suggested
an architecture providing policy specification services for I2NSF
users to control and manage NSF instances through the high-level
policies and described how the proposed architecture is used for
VoIP-VoLTE services. However, the translation of the user-defined
high-level policies has difficulties inherently such as consistency
or verification, and in the above works, they do not specify how to
implement the translation of user-defined high-level policies into
low-level policies and to map the policies to NSF instances.

9 CONCLUSION

In this paper, we presented a framework for managing user-defined
security policies for NSFs based on the network interfaces that are
currently being discussed in the IETF working group for interfaces
to network security functions (i.e., I2NSF). Our ultimate goal is
to translate high-level security policies into low-level policies in
order to provide user-friendly interfaces and tools for system ad-
ministrators on network systems. To show the feasibility of the
proposed framework, we implemented a prototype based on the

https://ransom-waretracker.abuse.ch/blacklist/

IMCOM ’18, January 2018, Langkawi, Malaysia

RESTCONTF protocol and demonstrated that the proposed frame-
work can be applied to real-world scenarios for network separation,
DDoS mitigation, and ransomeware prevention.

As part of future work, we plan to develop techniques to parse
natural language-like high-level security policies and process them
for the proposed framework. We also intend to conduct real-world
experiments through the deployment of the proposed framework at
a university network, and analyze its performance for configuring
security rules to mitigate popular network attacks in a real-world
setting.

ACKNOWLEDGMENTS

This work was supported by Institute for Information & communi-
cations Technology Promotion(IITP) grant funded by the Korea gov-
ernment(MSIT) (No.2016-0-00078, Cloud based Security Intelligence
Technology Development for the Customized Security Service Pro-
visioning) and the MSIT(Ministry of Science and ICT), Korea, un-
der the ITRC(Information Technology Research Center) support
program(II'TP-2017-2015-0-00403) supervised by the II'TP(Institute
for Information & communications Technology Promotion).

REFERENCES

[1] Narmeen Zakaria Bawany, Jawwad A Shamsi, and Khaled Salah. 2017. DDoS
Attack Detection and Mitigation Using SDN: Methods, Practices, and Solutions.
Arabian Journal for Science and Engineering 42, 2 (2017), 425-441.

[2] Andy Bierman, Martin Bjorklund, and Kent Watsen. 2017. RESTCONF Protocol.
RFC 8040. https://tools.ietf.org/html/rfc8040.txt

[3] MBjorklund. 2010. YANG-A data modeling language for the Network Configuration
Protocol (NETCONF). RFC 6020. https://tools.ietf.org/html/rfc6020.txt

[4] Krzysztof Cabaj and Wojciech Mazurczyk. 2016. Using software-defined net-
working for ransomware mitigation: the case of cryptowall. IEEE Network 30, 6
(2016), 14-20.

[5] Rob Enns, Martin Bjorklund, and Juergen Schoenwaelder. 2011. Network Config-
uration Protocol (NETCONF). RFC 6241. https://tools.ietf.org/html/rfc6241.txt

[6] ETSL [n. d.]. Industry Specification Group for NFV. http://www.etsi.org/
technologies-clusters/technologies/689-network-functions-virtualisation. ([n.
d.]). Online; accessed 2017.

[7] Mahdi Daghmehchi Firoozjaei, Jachoon Paul Jeong, Hoon Ko, and Hyoungshick
Kim. 2017. Security challenges with network functions virtualization. Future
Generation Computer Systems 67, 2 (2017), 315-324.

[8] James B Fraley and James Cannady. 2016. Enhanced detection of advanced

malicious software. In Proceeding of the 7th IEEE Annual Ubiquitous Computing,

Electronics & Mobile Communication Conference.

Joel M Halpern and John Strassner. 2017. Generic Policy Data Model for Simplified

Use of Policy Abstractions (SUPA). IETF Internet-Draft draft-ietf-supa-generic-

policy-data-model-04. https://www.ietf.org/id/draft-ietf-supa-generic-policy-

data-model-04.txt

[10] Ahmed Hassan and Waleed Bahgat. 2009. A framework for translating a high

level security policy into low level security mechanisms. In Proceeding of the 7th

IEEE/ACS International Conference on Computer Systems and Applications.

Hassan Hawilo, Abdallah Shami, Maysam Mirahmadi, and Rasool Asal. 2014.

NFV: state of the art, challenges, and implementation in next generation mobile

networks (VEPC). IEEE Network 28, 6 (2014), 18—26.

[12] IETF. [n. d.]. Interface to Network Security Functions (I2NSF) Working Group.

http://datatracker.ietf.org/wg/i2nsf/charter/. ([n. d.]). Online; accessed 2017.

Xiao Liu, Brett Holden, and Dinghao Wu. 2017. Automated Synthesis of Access

Control Lists. In Proceeding of the 3rd IEEE International Conference on Software

Security and Assurance.

[14] Edward Lopez, Diego Lopez, Linda Dunbar, John Strassner, and Rakesh Kumar.
2017. Framework for Interface to Network Security Functions. IETF Internet-
Draft draft-ietf-i2nsf-framework-07. https://www.ietf.org/id/draft-ietf-i2nsf-
framework-07.txt

[15] A Mayoral, Ricard Vilalta, Raul Muifioz, Ramon Casellas, Ricardo Martinez, and
J Vilchez. 2014. Integrated IT and network orchestration using OpenStack,
OpenDaylight and active stateful PCE for intra and inter data center connectivity.
In Proceedings of the 40th IEEE European Conference on Optical Communication.

[16] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. 2014. Opendaylight:
Towards a model-driven SDN controller architecture. In Proceeding of the 15th

[9

=

(11

[13

Eunsoo et al.

IEEE International Symposium on a World of Wireless Mobile and Multimedia

Networks.
[17] Henry Nunoo-Mensah, Emmanuel Kofi Akowuah, and Kwame Osei Boateng. 2014.
A Review of Opensource Network Access Control (NAC) Tools for Enterprise
Educational Networks. International Journal of Computer Applications 106, 6
(2014), 28-33.
Sanghak Oh, Eunsoo Kim, Jaehoon Paul Jeong, Hoon Ko, and Hyoungshick Kim.
2017. A flexible architecture for orchestrating network security functions to
support high-level security policies. In Proceeding of the 11th ACM International
Conference on Ubiquitous Information Management and Communication.
Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu Koponen, and Scott
Shenker. 2009. Extending Networking into the Virtualization Layer.. In Proceeding
of the 8th ACM Workshop on Hot Topics in Networks.
Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J Jackson, Andy Zhou, Jarno
Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon,
and Martin Casado. 2015. The Design and Implementation of Open vSwitch..
In Proceeding of the 12th USENIX Symposium on Networked Systems Design and
Implementation.
Kumar Rakesh, Lohiya Anil, Qi Dave, Bitar Nabil, Palislamovic Senad, and Xia
Liang. 2017. Client Interface for Security Controller : A Framework for Security Policy
Requirements. IETF Internet-Draft draft-kumar-i2nsf-client-facing-interface-req-
03. https://www.ietf.org/id/draft-ietf-i2nsf-client-facing-interface-req-03.txt
Seungwon Shin, Lei Xu, Sungmin Hong, and Guofei Gu. 2016. Enhancing Network
Security through Software Defined Networking (SDN). In Proceeding of the 25th
IEEE International Conference on Computer Communication and Networks.

[18

[19

[20

[21

[22

A WEB INTERFACE FOR HIGH-LEVEL
SECURITY POLICIES

Figure 5 shows an example of web page for generating high-level

security policies in the proposed system. The simple interface is

designed using PHP.

* Policy Name:

staff-Facebook-Block

* Position:

Staff -

* Website:

Facebook

1

* Starting Time :

09:00 j

* Ending Time :

18:00 j

* Action:

Block j

Figure 5: Web UI example.

https://tools.ietf.org/html/rfc8040.txt
https://tools.ietf.org/html/rfc6020.txt
https://tools.ietf.org/html/rfc6241.txt
http://www.etsi.org/technologies-clusters/technologies/689-network-functions-virtualisation
http://www.etsi.org/technologies-clusters/technologies/689-network-functions-virtualisation
https://www.ietf.org/id/draft-ietf-supa-generic-policy-data-model-04.txt
https://www.ietf.org/id/draft-ietf-supa-generic-policy-data-model-04.txt
http://datatracker.ietf.org/wg/i2nsf/charter/
https://www.ietf.org/id/draft-ietf-i2nsf-framework-07.txt
https://www.ietf.org/id/draft-ietf-i2nsf-framework-07.txt
https://www.ietf.org/id/draft-ietf-i2nsf-client-facing-interface-req-03.txt

	Abstract
	1 Introduction
	2 Background
	2.1 Network Function Virtualization (NFV)
	2.2 Network Security Function (NSF)
	2.3 OpenDaylight & Open vSwitch
	2.4 RESTCONF protocol
	2.5 Network Access Control (NAC)

	3 Proposed framework
	3.1 Policy generator
	3.2 Policy converter
	3.3 Policy parser

	4 User-defined policy
	5 Implementation
	5.1 Client interface & RESTCONF client
	5.2 RESTCONF server
	5.3 Implementation example: NAC

	6 Case studies
	6.1 DDoS mitigation
	6.2 Ransomware prevention

	7 Limitations
	8 Related work
	9 Conclusion
	Acknowledgments
	References
	A Web interface for high-level security policies

