
A Flexible Architecture for Orchestrating Network Security
Functions to Support High-Level Security Policies

Sanghak Oh1, Eunsoo Kim2, Jaehoon (Paul) Jeong3, Hoon Ko2, Hyoungshick Kim1

1Department of Software, Sungkyunkwan University, Republic of Korea
2Department of Computer Science and Engineering, Sungkyunkwan University, Republic of Korea

3Department of Interaction Science, Sungkyunkwan University, Republic of Korea
{osh09, eskim86, pauljeong, skoh21, hyoung}@skku.edu

ABSTRACT
Network Functions Virtualization (NFV) has provided a new
way to design and deploy network security services, but it
may fail to build a practically useful ecosystem that seam-
lessly integrates network security services if there is no stan-
dard interface between them. We propose a generic archi-
tecture for security management service based on Network
Security Functions (NSF) using NFV. The proposed archi-
tecture allows users to define their security requirements in a
user-friendly manner by providing the users with high-level
security interfaces that do not require specific information
about network resources and protocols. We design basic
components (e.g., Security policy manager, NSF capability
manager, Application logic, Policy updater and Event col-
lector) and interfaces for the proposed architecture. We in-
troduce three use cases: (1) blacklists of dangerous domains,
(2) time-dependent access control policies and (3) detection
of suspicious calls for VoIP-VoLTE services. We also ex-
plain how to implement our proposed architecture with an
illustrative example. Furthermore, we discuss several tech-
nical challenges to deploy the proposed architecture in a real
network environment.

CCS Concepts
•Networks → Network architectures; Middle boxes / net-
work appliances; Network management;

Keywords
Security management, NFV, NSF, Security policy

1. INTRODUCTION
Network Functions Virtualization (NFV) is an emerging

area for the network industry [1]. NFV promises to reduce
the cost of deploying and maintaining networks by decou-
pling network functions from dedicated hardware appliances
and implement those functions as pure software instances

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IMCOM ’17, January 05-07, 2017, Beppu, Japan
c© 2017 ACM. ISBN 978-1-4503-4888-1/17/01. . . $15.00

DOI: http://dx.doi.org/10.1145/3022227.3022270

running on general purpose commodity servers [2]. Net-
work Security Functions (NSF), such as firewall, Intrusion
Detection System (IDS) and Intrusion Protection System
(IPS), can also be provided as virtual network functions
that might be automatically provisioned and dynamically
migrated based on real-time security requirements. In this
paper, we focus on NSF rather than general-purpose NFV.

To successfully deploy NFV-based security applications,
standardization is critical because NSFs are often developed
by different vendors and/or managed by different network
operators. Recently, some basic standard interfaces to con-
trol NSFs are being developed by Interface to Network Se-
curity Functions (I2NSF) working group [3], which is part
of an International Internet Standardization Organization
called Internet Engineering Task Force (IETF) [4]. Thus,
within a few years, various NSFs will be remotely controlled
by a network entity called security controller, which is a
central management entity for NFV-based security services,
through standard interfaces [5].

However, there is still room for standards development
in NFV-based security applications because security con-
trollers must also communicate with any NSF client (e.g.,
I2NSF client) that is capable of creating and managing se-
curity policies on networks. In this paper, we propose a
layered architecture to seamlessly integrate any NFV-based
security application managed by a security controller into
NFV-enabled networks. With this architecture, application
users can enforce their high-level security policies in a user-
friendly manner.

The rest of this paper is organized as follows. Section 2
presents the proposed architecture for security management
services based on NFV. Section 3 explains the three key use
cases using the proposed architecture. Section 4 describes
how to implement the proposed architecture in practice with
an illustrative case. Next, Section 5 discusses technical chal-
lenges on implementing our architecture. Related work is
summarized and analyzed in Section 6. Finally, we conclude
in Section 7.

2. ARCHITECTURE
In this paper, we propose a layered architecture that inte-

grates additional components for security management ser-
vices based on NFV. To support flexible and effective secu-
rity policy enforcement, the proposed architecture consists
of the three layers: (1) NSF client, (2) Security management
system and (3) NSF instances (see Figure 1). Here, arrows
denote communication between functional components. A
bidirectional arrow indicates the interaction between two

Figure 1: Generic architecture of security manage-
ment based on NFV.

components in both directions and an unidirectional arrow
indicates the interaction between two components only in
the direction defined by the arrow.

The architecture is designed to support the enforcement
of flexible and effective security policies. We use the term
NSF client to refer to NFV-based security application. In
a NSF client, Application logic generates high-level security
policies; Policy updater distributes such policies to Secu-
rity controllers through Client Facing Interface. In a Secu-
rity controller, Security policy manager maps the high-level
policies into low-level security policies relevant to NSF capa-
bility that is registered into NSF capability manager. After
mapping, Security policy manager delivers those policies to
NSF(s) through NSF Facing Interface. We explain those
operations at the network components in detail.

2.1 Security policy manager
Security policy manager is a component which receives

a high-level policy from Policy updater via Client Facing
Interface, and maps the high-level policy into several low-
level policies relevant to a given NSF capability that is reg-
istered into NSF capability manager. Moreover, Security
policy manager delivers those policies to NSF(s) via NSF
Facing Interface.

On the other hand, when an event that requires the low-
level policy to be changed happens in NSF, NSF sends the
event to Security policy manager via NSF Facing Interface.
Security policy manager then sends it to Event collector via
Client Facing Interface.

2.2 NSF capability manager
NSF capability manager is a component integrated into

Security controller. It stores an NSF’s capability registered
by Developer’s management system via Registration Inter-
face and shares it with Security policy manager so that Secu-
rity policy manager can generate low-level policies relevant

to a given NSF capability. Moreover, whenever a new NSF
is registered, NSF capability manager requests Developer’s
management system to register the NSF’s capability into
the management table of NSF capability manager via Reg-
istration Interface. When the existing NSF is deleted, NSF
capability manager eliminates the NSF’s capability from its
management table.

2.3 Developer’s management system
Developer’s management system is a component which

registers a new NSF’s capability into NSF capability man-
ager via Registration Interface. When there is an update in
the registered NSF, it is delivered from Developer’s manage-
ment system to NSF capability manager.

2.4 Application logic
Application logic is a component which generates a high-

level security policy to mitigate security attacks. It receives
the event for updating (or generating) a high-level policy
from Event collector and updates (or generates) a high-level
policy based on the collected events. Application logic then
sends the high-level policy to Policy updater in order to
forward a recently updated policy. In Section 3, we will
explain how Application logic is designed through the three
use cases.

2.5 Policy updater
Policy updater is a component which receives a high-level

security policy generated by Application logic and distributes
it to Security controller(s) via Client Facing Interface.

2.6 Event collector
Event collector receives an event, which should be re-

flected on updating (or generating) a high-level policy in
Application logic, from Security controller. The procedure
of receiving an event in NSF is necessary because a low-level
security policy can be updated according to an event that
occurred in an NSF. After receiving it, Event collector for-
wards it to Application logic so that Application logic can
update (or generate) a high-level security policy based on
the event received from Security controller.

3. USE CASES
A generic architecture based on NFV is designed to react

to possible security attacks. This section shows the proce-
dure of the defense for security attacks in blacklists of dan-
gerous domains, time-dependent access control policies, and
detection of suspicious calls for VoIP-VoLTE services.

3.1 Blacklists of dangerous domains
Dangerous domain (e.g., used for malware distribution)

blacklisting maintains and publishes the blacklists of IP ad-
dresses of possible attacking hosts, servers and networks
that are suspicious of malicious activities. For the security
management architecture for dangerous domain blacklisting,
Dangerous domain manager takes the role of Application
logic to perform security management.

Based on the dangerous domain blacklisting, the list of
dangerous domains is stored in Dangerous domain database
and can be updated either manually or automatically by
Dangerous domain manager as Application logic. Also, Dan-
gerous domain manager periodically loads the list of dan-
gerous domains from Dangerous domain database and gen-

erates a new high-level security policy (e.g., blocking the list
of dangerous domains using their IP addresses) to prevent
the delivery of packets from/to those newly added danger-
ous domains. It sends the new high-level security policy to
Policy updater, which distributes it to Security controller(s).
Security controller maps the high-level policy into low-level
policies and enforces the low-level security policies in NSF.

When NSF detects a new dangerous domain, the corre-
sponding IP addresses are sent by an NSF to Security con-
troller via NSF Facing Interface. Security controller delivers
the IP addresses to Event collector. Event collector forwards
the IP addresses to Dangerous domain manager, and then
Dangerous domain manager updates the Dangerous domain
database.

3.2 Time-dependent access control policies
Time-dependent access control policies manage a user’s

access to particular websites during a certain period of time.
For example, in a company, a manager blocks employees’
access to Youtube website, which is a big distraction during
working hours.

Based on time-dependent access control, NSF clients reg-
ister the list of blocking websites and time at Application
logic. Application logic stores the list into database and
generates a high-level security policy (e.g., blocking the ac-
cess to websites by checking the blocking websites and time).
Application logic delivers it to Policy updater, and then Pol-
icy updater forwards it to Security controller. In Security
controller, Security policy manager maps the high-level pol-
icy to low-level policies, and then it sends and enforces them
to NSFs.

3.3 Detection of suspicious calls for VoIP-VoLTE
services

VoIP-VoLTE security management maintains and pub-
lishes the blacklists of IP addresses, source ports, expire
time, user-agent and Session Initiation Protocol (SIP) URIs
of an SIP device that are suspicious of illegal call or authen-
tication. In our generic security management architecture,
VoIP-VoLTE security manager acts as Application logic for
VoIP-VoLTE security services in Figure 1.

Based on VoIP-VoLTE security management, the list of il-
legal devices information is stored in VoIP-VoLTE database
and can be updated either manually or automatically by
VoIP-VoLTE security manager as Application logic. Also,
VoIP-VoLTE security manager periodically loads the list of
illegal devices information from VoIP-VoLTE database and
generates a new high-level security policy (e.g., the blocking
list of illegal devices using IP address, source ports, etc) to
prevent the delivery of packets from/to those newly added
VoIP-VoLTE attackers. It sends the new high-level security
policy to Policy updater, which distributes it to Security
controllers. Security controller maps the high-level policy
into several low-level policies and enforces the low-level se-
curity policies in an NSF.

When the NSF detects an anomalous message or call de-
livered from a domain, the information of the domain such
as an IP address, user-agents and expire time values is sent
by an NSF to Security controller via NSF Facing Interface.
Security controller delivers it to Event collector. Event col-
lector forwards the detected domain information to VoIP-
VoLTE security manager, and then VoIP-VoLTE security
manager updates the VoIP-VoLTE database.

4. IMPLEMENTATION
In this section, we explain how to implement each compo-

nent and interface in our proposed architecture. We consider
the use case in Section 3.3 as our implementation scenario.
Through this implementation, our goal is to block suspicious
VoIP-VoLTE calls by checking whether an incoming call has
fraudulent call behaviors; for example, the call is made from
a blacklisted location at an unusual time of day.

4.1 NSF client
To provide user-friendly and more accessible management

service to an administrator, we build a web server and cre-
ate a couple of web pages to provide user interfaces for the
administrator to set high-level security policies. In order for
the administrator to manage the security policy, we consider
the two web pages: (1) the policy setup page for Policy up-
dater and (2) the log messages page for Event collector (see
Figure 2). We adopt YANG [6] to define data models for
the communication between NSF client and Security man-
agement system because YANG is popularly used to model
configuration and state data manipulated by standard net-
work protocols such as RESTCONF [7] that provides a pro-
grammatic interface over HTTP to access data that is de-
fined in a YANG model.

Figure 2: User interfaces in NSF client.

In the policy setup page, we create some fields for defin-
ing high-level security policies such as blacklisting countries
during a specified time interval. If the administrator set a
new high-level security policy, a data model parser in NSF
client interprets the policy and generates an XML file in
accordance with YANG data model.

In the log messages page, we show the information about
events to report the results of security applications and/or
the status of functional components at Security management
system and NSF instances when the events are delivered
from Security management system to Event collector.

4.2 Client Facing Interface
In order to enable interaction between NSF client and Se-

curity management system, we implement a communication
channel based on RESTCONF. Moreover, we prefer REST-
CONF instead of Network Configuration (NETCONF) pro-
tocol [8] since NSF client is based on web applications in our
implementation.

We also design a data model based on security policy re-
quirements [9] because there is no standardized data model
for Client Facing Interface yet. In Figure 3, we show a part

Figure 3: Data model in Client Facing Interface.

of our data model design related to a policy management for
detecting suspicious calls in VoIP-VoLTE services.

We design a generic data model to apply a policy to un-
known attacks and conditions. Our data model consists of
(I) policy life cycle management, (II) policy rule, and (III)
action. (I) The policy life cycle field specifies an expiration
time and/or a set of expiration events to determine the life-
time of the policy itself. (II) The policy rule field represents
the specific information about a high-level policy such as
service types, conditions and valid time interval. (III) The
action field specifies which actions should be taken. For
example, call traffic from a blacklisted caller location at an
unusual time of day (included in the valid-time-interval)
could be blocked and sequentially forwarded to a pre-defined
host for Deep Packet Inspection (DPI) when both permit

and mirror are assigned true.

4.3 Security management system
The main role of Security management system is to trans-

lated a high-level policy into a set of low-level policy. For
example, Security management system maps a country name
into a set of IP addresses by using a geolocation database
that provides IP addresses for the country. After translating
the high-level security policy, Security management system
generates low-level security policies to specify the actions
network traffic from and/or to those IP addresses. The data
model parser generates an XML file for a low-level security
policy and delivers it to proper NSF instances. Security
management system also interprets security events gener-
ated by NSF into a high-level log message in an YANG data
model and delivers it to NSF clients in the opposite direc-
tion.

4.4 NSF Facing Interface
Similar to Client Facing Interface, NSF Facing Interface

also uses the RESTCONF protocol and YANG data model
in our implementation. I2NSF is currently working to de-
fine the standard data models and protocols for NSF Facing
Interface [5].

4.5 NSF instances
In our use case, we select a firewall application as an NSF

instance to determine whether a VoIP-VoLTE call is sus-
picious or not by checking the caller’s and callee’s locations
and call time. When a call has suspicious behavior patterns,
its network traffic could be effectively blocked by the fire-
wall application according to the low-level security policy.
The results for the firewall application would be delivered in
an YANG data model to the Security management system
through the RESTCONF protocol.

Multiple NSF instances can be considered depending on
specific situations. For example, we can additionally use
DPI for analyzing the network traffic from suspicious callers.

5. KEY CHALLENGES
In this section, we discuss technical challenges on imple-

menting our architecture. Our technical challenges include
the followings:

• As Policy updater updates Security controllers with
the recent high-level policies, the update time instants
on Security controller may be different, and the incon-
sistency of the high-level security policy could occur
during this update process similar to the inconsistency
of configuration during the update process which is
commonly seen in SDN switches [10].

• A single Security controller will not be able to handle
the increasing number of NSF clients because Security
controller cannot scale up with the incoming policy
flows, thereby causing scalability problem [11].

• A secure and authenticated communication channel
should be established between network entities (e.g.,
NSF client and Security management system). With-
out ensuring such a communication channel, inappro-
priate security policies can be maliciously modified by
attackers in transfer. Thus, an efficient key manage-
ment is required in order to distribute keys properly
to network entities.

• When Security controllers process high-level and low-
level policies, processing sequences could cause a syn-
chronization problem on both Security controllers and
NSFs. We should define a proper scheduling model
in Security controller to prevent this synchronization
problem from happening.

• In order to create high-level policies which will be de-
livered through Client Facing Interface, we should first
define a generic policy data model in Client Facing In-
terface. we can use the generic data model of Simpli-
fied Use of Policy Abstractions (SUPA) which makes
it easy manage the policies regardless of the form and
content [12].

On implementing our architecture, we should consider all
these challenges to improve the performance of our system.

6. RELATED WORK
The interest in using network function virtualization for

security services has been growing steadily in the networking
community. Battula [13] described how NFV can be applied
to a specific NSF. The network security functions could be
used to detect, block or mitigate suspicious and dangerous
network activities with flexible and dynamic service require-
ments. Mahdi et al. [14] discussed the security challenging
issues in NFV and their corresponding solutions.

However, without standard interfaces and specifications
for NSFs, it is not possible to integrate and manage NSFs in
a seamless manner. In particular, lack of standard interfaces
for high-level security policies makes it difficult to deploy
NSF-based applications into the real world. I2NSF [5] and
ETSI NFV [15] are actively working to define a reasonable
standard framework using NSF based on NFV.

In this paper, we present an architecture that allows clients
to configure and manage high-level security policies to con-
trol NSF instances without the detailed implementation re-
lated to the NSFs. We develop the data model for Client
Facing Interface to satisfy the security requirements dis-
cussed in I2NSF [9] and follow the generic data model of
SUPA [12].

7. CONCLUSION
In this paper, we presented a generic architecture for se-

curity management based on NSF using NFV. We also ex-
plained how the proposed framework can be to mitigate sev-
eral practical attack scenarios such as the blacklists of dan-
gerous domains, time-dependent access control policies and
the detection of suspicious calls for VoIP-VoLTE services.
We particularly introduced the detailed implementation of
the proposed architecture with an illustrative example. In
future work, we will fully implement our proposed frame-
work to show its feasibility for mitigating various network
attacks.

8. ACKNOWLEDGEMENTS
This work was supported in part by the NRF Korea (No.

2014R1A1A1003707), the ITRC (IITP-2015-H8501-15-1008),
and the MSIP/IITP (R0166-15-1041, R-20160222-002755).

9. REFERENCES
[1] Hassan Hawilo, Abdallah Shami, Maysam Mirahmadi,

and Rasool Asal. NFV: state of the art, challenges,
and implementation in next generation mobile
networks (vEPC). IEEE Network, 28(6):18–26, 2014.

[2] Arsany Basta, Wolfgang Kellerer, Marco Hoffmann,
Hans Jochen Morper, and Klaus Hoffmann. Applying
NFV and SDN to LTE mobile core gateways, the
functions placement problem. In Proceedings of the 4th
Workshop on All things cellular: operations,
applications, & challenges, pages 33–38, 2014.

[3] IETF Interface to Network Security Functions (i2nsf)
Working Group.
https://datatracker.ietf.org/wg/i2nsf/charter/.

[4] The Internet Engineering Task Force (IETF).
https://ietf.org/.

[5] Edward Lopez, Diego Lopez, Linda Dunbar, John
Strassner, Xiaojun Zhuang, Joe Parrott, Ram (Ramki)
Krishnan, and Seetharama Rao Durbha. Framework

for Interface to Network Security Functions. IETF
Internet-Draft draft-ietf-i2nsf-framework-02, July
2016. http://www.ietf.org/internet-drafts/
draft-ietf-i2nsf-framework-02.txt.

[6] M. Bjorklund. YANG - A Data Modeling Language
for the Network Configuration Protocol (NETCONF).
IETF RFC 6020, October 2010.
http://www.rfc-editor.org/rfc/rfc6020.txt.

[7] Andy Bierman, Martin Bjorklund, and Kent Watsen.
RESTCONF Protocol. IETF Internet-Draft
draft-ietf-netconf-restconf-16, August 2016.
http://www.ietf.org/internet-drafts/
draft-ietf-netconf-restconf-16.txt.

[8] R. Enns, M. Bjorklund, J. Schoenwaelder, and
A. Bierman. Network Configuration Protocol
(NETCONF). IETF RFC 6241, June 2011.
http://www.rfc-editor.org/rfc/rfc6241.txt.

[9] Rakesh Kumar, Anil Lohiya, Dave Qi, and Xiaobo
Long. Client Interface for Security Controller : A
Framework for Security Policy Requirements. IETF
Internet-Draft
draft-kumar-i2nsf-client-facing-interface-req-00,
August 2016. http://www.ietf.org/internet-drafts/
draft-kumar-i2nsf-client-facing-interface-req-00.txt.

[10] Mark Reitblatt, Nate Foster, Jennifer Rexford, and
David Walker. Consistent updates for software-defined
networks: Change you can believe in! In Proceedings
of the 10th Workshop on Hot Topics in Networks,
page 7, 2011.

[11] Soheil Yeganeh, Amin Tootoonchian, and Yashar
Ganjali. On scalability of software-defined networking.
IEEE Communications Magazine, 2(51):136–141,
2013.

[12] Joel M. Halpern and John Strassner. Generic Policy
Data Model for Simplified Use of Policy Abstractions
(SUPA). IETF Internet-Draft
draft-ietf-supa-generic-policy-data-model-00, July
2016. http://www.ietf.org/internet-drafts/
draft-ietf-supa-generic-policy-data-model-00.txt.

[13] Laxmana Rao Battula. Network Security Function
Virtualization(NSFV) towards Cloud computing with
NFV Over Openflow infrastructure: Challenges and
novel approaches. In Proceedings of the 3rd
International Conference on Advances in Computing,
Communications and Informatics, pages 1622–1628,
2014.

[14] Mahdi Daghmehchi Firoozjaei, Jaehoon (Paul) Jeong,
Hoon Ko, and Hyoungshick Kim. Security challenges
with network functions virtualization. Future
Generation Computer Systems, 2016.

[15] GSNFV ETSI. Network functions virtualisation
(NFV): Architectural framework. ETSI GS NFV,
2(2):V1, 2013.

