
A Parcel Delivery Scheduling Scheme in Road
Networks

1st Junhee Kwon
Computer Science & Engineering

Sungkyunkwan University
Suwon, Republic of Korea

juun9714@skku.edu

2nd Jaehoon (Paul) Jeong
Computer Science & Engineering

Sungkyunkwan University
Suwon, Republic of Korea

pauljeong@skku.edu

Abstract—Due to COVID-19, ordering food through online
shopping increased. Accordingly, the use of logistics and delivery
services is also increasing. As the number of parcels to be
delivered gets bigger, the efficiency of the delivery mechanism
and battery efficiency becomes important. The problem of finding
the route traveling several destinations at once is called as
Traveling Salesman Problem (TSP). There are several algorithms
suggested to solve it in polynomial time. Among them, this paper
experimented to compare the performance of two algorithms, the
greedy algorithm, and the branch-and-bound algorithm. We used
the Simulation of Urban Mobility (SUMO) program to test the
vehicle running based on the calculated route by two algorithms.
The average running time and charging time are recorded to
evaluate the performance. Through this experiment, we found out
that the branch-and-bound algorithm provides in a faster route
selection and consumes less battery than the greedy algorithm.

Index Terms—parcel delivery, shortest path, branch-and-
bound algorithm, SUMO, TraCI, road network

I. INTRODUCTION

As the amount of time spent indoors has increased recently
due to COVID-19, the scale of online shopping transactions
has increased significantly. In Korea, online shopping trans-
actions of foods such as grocery, beverage, agricultural, and
fishery products increased by 37.8% compared to 2 years ago.
In addition, the number of delivery food orders also increased
by 97.7% in two years. In February 2022, the total online
shopping transaction amount was 15.4314 trillion won, up to
30.9% from two years ago [1].

This increase in online shopping naturally led to heavy
courier logistics volume. Although the trend of the domestic
delivery market has been steadily increasing since 2012, the
growth rate of the delivery volume in 2020 compared to the
previous year was 20.9%. Considering that the number of
parcels has been increasing by around 10% every year since
2016, it is considered a radical increase. The total number of
parcels in 2021 was 3.62 billion.

In this situation, it is natural that the efficiency of delivery
becomes important. The factor that determines the efficiency
of parcel delivery is cost, and the cost consists of time and
resources. Resources are petroleum or electric batteries for
courier transportation. International crude oil prices for the
year were at a low price of 62.410 USD and a high price
of 115.68 USD. The price of resources is very unstable.

When cost fluctuates, it is not easy for companies that operate
courier services to maintain their business stably. Therefore in
transportation services, time is considered the same as cost.
The faster and shorter the delivery is, the more resources we
can save. At the same time, environmental pollution caused
by petroleum is also a serious problem. Thus, it is desirable
to maximize the efficiency of petroleum and further transfer
existing vehicles to electric vehicles.

There are several methods to improve the efficiency of
courier delivery. Those methods enhance a courier distribution
network and collect logistics for a nearby location to deliver
them at once. However, methods such as clustering and
networking are already difficult to improve. Currently, the
most needed enhancement in the delivery industry can be
an efficient route selection for the visit of several delivery
destinations.

Now, when courier drivers are assigned the parcels to be
delivered, they first check their assigned parcels’ destinations
and efficient routes by themselves. Furthermore, they load the
courier boxes into the vehicle by the order they decide to
visit. They load the parcels that will be delivered at last at the
innermost side and load the parcels that will be delivered first
at the outermost side. When loaded in this way, it is possible
to take out items in visit order and deliver them to customers
when they arrive at each delivery destination without finding
the parcels to deliver.

Experienced courier drivers can use their skills to find
an efficient route. However, this way cannot guarantee full
optimization from the overall perspective of the courier service
company. Applying an efficient algorithm to the delivery
service would ensure better optimization from the overall
perspective, rather than determining the route by the driver
himself.

With this goal, the authors of this paper decided to research
which algorithm can find the faster route to visit many delivery
destinations. Therefore, this paper evaluates the running time
and the charging time of the fastest route based on the different
algorithms.

In this paper, the performance of the two algorithms (i.e.,
Greedy and Branch-and-Bound algorithms) was compared,
and a simulation program was used to check the execution
time of the two algorithms. The Simulation of Urban Mo-

1750978-1-6654-9939-2/22/$31.00 ©2022 IEEE ICTC 2022

bility program, called SUMO, is a program that implements
activities of various entities on the road network such as a
pedestrian, vehicle, and public transportation [2], [3]. Using
the SUMO program, users can define specific vehicles with
various characteristics and construct roads. In this paper’s
simulation, the vehicle is defined as an electric vehicle, so
it is charged by a charging station while driving depending on
the remaining battery capacity and heads back to its original
destination after the charging. The road network in which such
an electric vehicle drives consists of a round trip 8-lane road
in a 12x12 grid. Traffic lights and several electric charging
stations are located on the road, and vehicles start from the
same start point and visit their delivery destinations one by
one.

Using this simulation, this paper calculates and compares
the performance of the two heuristic algorithms. The author
of this paper selected the Greedy algorithm and Branch-and-
Bound algorithm as performance evaluation targets. This is
because the Greedy algorithm and Branch-and-Bound algo-
rithm have different approaches to finding the shortest route.

In a general problem, the most efficient one is selected
after calculating all cases. However, the problem like “finding
the fastest route to visit all destinations” that we currently
have to solve is not the case. If we calculate all cases in this
problem, it becomes impossible to find answers in polynomial
time, i.e., reasonable time. It is because there are too many
cases to calculate, and the problems like this are called NP-
Hard problems. The optimal solution for NP-Hard problems
cannot be obtained without calculating all cases. As a result,
the Heuristic algorithm is a way to escape from this dilemma.
There are several heuristic algorithms. Greedy algorithm and
Branch-and-Bound algorithm belong to it.

The Greedy algorithm makes decisions that look best at each
step. As it is the simplest and easiest way to implement and
understand, it is popular and used a lot in implementation [4].
However, it does not guarantee the most efficient decisions
throughout the system. Although it may seem inefficient at
this step, the choice may be a better decision from the overall
point of view [5].

The Branch-and-Bound algorithm improves the method that
considers all cases which consumes a lot of time to find the
answer [6]. It tries to calculate all cases, but the algorithm
skips the cases that are unlikely to be the most efficient
and starts calculating other remained cases. By skipping the
meaningless cases, this algorithm can find the answer faster.
By comparing the running time consumed to deliver all the
parcels based on two different algorithms, this paper suggests
the direction for the logistics industry to develop further.

When the more efficient algorithm is determined, that
algorithm can be applied to the entire courier service system.
Recently, as the number of parcels has increased, the burden
of work has increased significantly, making courier drivers
overwork [7], [8]. Applying the effective algorithm to the
entire system will reduce the burden on courier drivers. Once
courier drivers spend less time deciding the delivery order, they
can focus on the delivery itself. In addition, if the order of the

visited delivery destinations is systematically determined, the
loading order of the delivery volume can also be systematically
determined accordingly. That is why the burden on delivery
drivers can be reduced consecutively. Lastly, if the order of
delivery visit and loading can be systematically implemented
in the future, autonomous delivery can also be started. When
the system of the delivery industry gets better, the workload
and burden of drivers may be reduced. Furthermore, the cost
of the delivery service may be significantly reduced through
autonomous delivery.

The remainder of this paper is organized as followed.
Section II summarizes the research about the algorithms for
the Traveling Salesman Problem (TSP). Section III describes
the architecture of our simulation for the performance eval-
uation. Section IV shows the implementation and Section V
performance evaluation of our simulation. Lastly, Section VI
concludes our paper along with the future work.

II. RELATED WORK

The algorithms to find the shortest route that visits all
the destinations at once have been an important aspect of
driving efficiency research. This section reviews the required
knowledge to understand this paper and the existing research
of algorithms proposed by the recent literature.

The traveling salesman problem is called TSP in short [9].
TSP is a popular problem in the software area because a lot
of academic and commercial areas make use of the solutions
to this problem. This problem is about finding the shortest
way to visit all the destinations. The salesman starts the trip
to visit all the destinations and should return to the start point.
To reduce the cost of a trip, finding the shortest path is the
most important part. As there are extremely many possible
ways to tour all those destinations, thoroughly calculating them
all is impossible in polynomial time. A problem like this is
called an NP-Hard problem. Although the NP-Hard problem
needs to calculate all the cases to get the shortest route, it is
impossible to calculate all in polynomial time. To solve this
NP-Hard problem, a heuristic algorithm is used. The heuristic
algorithm can make the approximate solution for the problem
in reasonable time [10].

The greedy algorithm and branch-and-bound algorithm be-
long to the heuristic algorithm. The greedy algorithm chooses
the best option at each step without considering the overall
optimization. As a result, it does not ensure the shortest route
for the problem. However, it is a fast and simple way to im-
plement the algorithm that finds a reasonable answer. Another
algorithm is the branch-and-bound algorithm. The branch-and-
bound algorithm is devised to overcome the time-consuming
classic algorithms [6]. This algorithm reduces the calculation
time. It keeps the minimum value while calculating the cases
and compares the minimum value with the calculating value.
If the middle value of a specific case already exceeds the
minimum value, it skips the remained calculation of the case
and starts the next case’s calculation. By this mechanism, it
can reduce the meaningless calculation [11].

1751

Fig. 1. SUMO and TraCI architecture

The genetic algorithm which belongs to the heuristic al-
gorithm is suggested to solve the TSP in [12]. The genetic
algorithm tries to figure out the balance between exploration
and exploitation to obtain the global optimum. [12] applies
the genetic algorithm in TSP, and examines the performance
of the algorithm when using different selection strategies.

[13] adopted the TSP heuristic algorithm for routing order
pickers in warehouses. In warehouses, order picking is the
main work and the most important work. The cost of order
picking occupies from 55% to 65%. Therefore, it adopted the
heuristic algorithms in multi-block configuration.

[14] suggested the benefits of the branch-and-bound algo-
rithm in the NP-Hard problem. It proposes the combinatorial
branch-and-bound algorithm based on partial schedules. As
this algorithm can construct the lower bound.

III. ARCHITECTURE

This section discusses the architecture and working flow of
our simulation to evaluate the performance of two algorithms.
The simulation of this paper manages the electric vehicles that
visit randomly assigned destinations. Each electric vehicle sets
the order of visiting according to the algorithm and visits the
destinations based on the decided order. Each vehicle ends up
running after it visits all the destinations, and it records the
total running time.

A. SUMO and TraCI

Our simulation utilizes the open-source program Simula-
tion of Urban Mobility (SUMO) [2]. This simulation allows
programmers to make road networks with custom features
such as the number of lanes, traffic lights, and charging
stations. Furthermore, SUMO supports the objects moving
around the road network like a pedestrian, vehicles, and public
transportation such as trains, buses, and trams. Through this
support, SUMO enables the simulation of urban traffic.

TraCI is the python library that enables the SUMO sim-
ulation to operate dynamically. Through TraCI, the user can
define the object for the simulation and run it in the simulation.
For example, a user can write python code that creates the

Fig. 2. Road, Vehicles and Charging station

vehicle with dynamic characteristics or according to the con-
dition through TraCI. Users can also record the logs generated
while the simulation is running.

B. Simulation Network Architecture

Our simulation’s road network consists of edges, nodes, and
lanes. Each edge is comprised of lanes and connected through
nodes. The network is a 12x12 grid shape and each edge is
8 round-trip lanes. The vehicle can go straight, turn left and
turn right according to the traffic light. All nodes have a traffic
light and traffic lights continue to repeat patterns including red,
green, and yellow.

Vehicles have the characteristics such as id, state, battery
capacity, destination, and next charging station id. According
to the value of these characteristics, the behavior of the
vehicle change. Through vehicle id, simulation can assign the
destinations that the vehicle should visit. There are states such
as running, charging, and nothing. Each vehicle is an electric
vehicle and keeps the battery capacity charged above a specific
level. When the battery capacity of the vehicle gets low, the
vehicle finds the nearest charging station and forwards to it.
The destination is the target location that vehicle needs to
forward now. There are several charging stations on the road
network. As each charging station can charge one vehicle at
once, each charging station manages the vehicles waiting in
order.

C. Working Flow

When TraCI code is executed, simulation starts, and python
code retrieves the index of the road and charging station. Based
on the id of the road, the TraCI code randomly creates vehicles
and the destination list for the created vehicles. After that,
each destination list is assigned to the vehicle. Each vehicle
proceeds based on the determined route. At this point, greedy
and branch-and-bound methods operate differently.

For the greedy algorithm, full paths of visiting orders are
not determined before the initial departure. Since the greedy
algorithm makes the best choice at each step without consid-
ering overall cost, it starts running after only calculating the
closest destination from the starting point. Then, after arriving

1752

at the destination the vehicle was heading to, it searches for
the next destination among the remaining destinations based
on the current location. In this way, the vehicle can tour all
destinations one by one.

For the branch-and-bound algorithm, full paths are deter-
mined before initial departure. Unlike the greedy algorithm,
which searches for the next destination when it arrives at
each destination, it initially sets all visiting orders and then
starts running. Therefore, when delivery at each destination is
completed, no additional search time is required for the next
destination. After the destination is assigned to each vehicle,
all of the required time for a trip between the destinations
is calculated. Based on the information, the fastest path can
be explored. In this process, DFS and branch-and-bound
algorithms are used. Although the DFS algorithm explores all
possible cases, the cases that are unlikely to be the fastest
route are excluded by stopping the calculation in the middle.

When there is no more destination left to visit, the vehicle
will end its operation at that time in both algorithms. Each
vehicle records the time consumed from the start of running
to the end of delivery. This record is used to compare the
time consumed based on the path obtained by two algorithms.
Additionally, each vehicle charges its battery when the battery
is low at the near charging station. When the determined
route is inefficient, the vehicle will travel a longer distance,
making the vehicle charge during operation. For this reason,
the charging time of the vehicles may also be an indicator
of the efficiency of the route. For this purpose, if the vehicle
charges, the charging time is also recorded.

Algorithm 1 A Greedy Algorithm
1: function FINDNEXT(from)
2: for i to length(D) do
3: if distance(from,D[i]) < min then
4: min ← distance(from,D[i])
5: T ← i
6: end if
7: end for
8: end function

9: T ← 0
10: D ← DestinationList
11: S ← StartingPoint
12: while length(D) > 0 do
13: min ← sys.maxsize
14: if Not Running then
15: FINDNEXT(S)
16: RUN()
17: else if Running & Arrived then
18: REMOVEFROMD(T)
19: FINDNEXT(T)
20: RUN()
21: end if
22: end while

Algorithm 2 A Branch-and-Bound Algorithm
1: function DFS(visited, value, min, final, destNum)
2: if min < value then
3: return ▷ Branch-and-Bound part
4: end if
5: if length(visited) == length(destNum) then
6: final ← visited
7: return
8: end if
9: for i to length(destNum) do

10: if i not in visited then
11: VISITED.APPEND(i)
12: value ← value+ distanceTo(i)
13: DFS(visited, value, min, final, destNum)
14: VISITED.POP()
15: end if
16: end for
17: end function

IV. IMPLEMENTATION

In this section, detailed implementations of the greedy
algorithm and branch-and-bound algorithm are described.

A. Greedy Algorithm

The greedy algorithm does not determine full paths in
the first step at departure because it makes the best-looking
choices in each step, as mentioned in the section III. Instead,
whenever each vehicle arrives at every destination, it searches
for the next destination. As shown in Algorithm 1, T is the
road ID of the destination where the vehicle is heading right
now. D is the list of destinations assigned to each vehicle.
S is the starting point where the vehicle starts delivery. The
algorithm updates the min initialized with the system’s max-
size value and searches for the nearest destination through the
FindNext(). The algorithm is repeated until the vehicle has
visited all the assigned destinations. The algorithm is divided
into two cases.

The first case is before the vehicle leaves its starting point.
Before departure, the vehicle calculates which destination is
closest to the current location based on the starting point and
destination list. And then, without searching for the second
destination to head to after arriving at the first target, the
driving begins immediately to the first destination. Therefore,
the greedy algorithm does not require much computational
time before departure.

When the vehicle arrives at the target destination, the algo-
rithm operates slightly differently from the first case. As the
vehicle arrived destination it targeted, it needs to search for the
next destination to forward. Through the RemoveFromD()
the vehicle deletes the destination that has already arrived
from the list. After that, it searches for the closest destination
from its current location among the remaining delivery targets
by FindNext(). This iteration ends when there is no more
destination to go to, that is when the destination list is empty.

1753

B. Branch-and-Bound Algorithm

Unlike the greedy algorithm, the branch-and-bound algo-
rithm does not make good-looking choices at each step. How-
ever, it includes a mechanism that can reduce computational
time while considering the number of all cases. The branch-
and-bound algorithm utilizes the Depth-First-Search (DFS)
algorithm [15]. The algorithm chooses the method of visiting
the last end when calculating the cost of each case. Like
the Greedy algorithm, the branch-and-bound algorithm utilizes
parameters such as min variables and D lists. Additionally,
it uses variables such as visited, final lists and value,
destNum. A visited list is for sequentially recording des-
tinations already visited. final contains the path that the
DFS() function will eventually return. The destNum means
the number of destinations to visit. The value records the
amount of time accumulated while searching the route.

Unlike the Greedy algorithm, the branch-and-bound algo-
rithm predetermines all paths to visit in the pre-start phase.
Therefore, the calculation process before departure is longer
than the greedy algorithm. However, instead, when it arrives
at each destination, it can leave for the next destination
immediately without any additional calculation steps.
DFS() is a recursive structure. When recursively calling

the function, the value is updated to the accumulated amount
of time plus the additional amount of time to reach the
next destination. The visited adds the next destination and
is conveyed as the parameter. If the length of the visited
list equals destNum, it means that the vehicle considered
all destinations. Then it saves the path in final and returns
final.

Algorithm 2 includes the branch-and-bound mechanism for
this process. In DFS() of Algorithm 2, the min value is
continuously updated. If the middle-cost value of a particular
path is already greater than the min value, that case no longer
proceeds. By the conditional statement in the algorithm, the
unnecessary calculation may be reduced. The disadvantages of
the DFS algorithm, which has a large amount of computation,
can be mitigated using these means.

V. PERFORMANCE EVALUATION

This section describes the experiment environment and the
performance results of the two algorithms.

A. Experiment

As shown in Figs. 3 and 4, we experimented by evaluating
the average running time and average charging time of the
vehicles which conducted the delivery based on the route
calculated by the two algorithms. The experiment was operated
with the same starting point and the same destination list for
the vehicles. The only difference is the way that vehicles use to
get the shortest route. We analyzed the performance difference
according to the number of destinations.

Experiments were carried out for 8 cases, from 3 to 10
destinations. The number of vehicles for each case is fixed
as 10 vehicles. The experiment was repeated 10 times for
each case, and the average value was compared. In both

Fig. 3. Average Running Time according to the Number of Destinations

Fig. 4. Average Charging Time according to the Number of Destinations

algorithms, the duration time recorded by the simulation itself
was used. At the same time, the time required for charging
was also recorded with driving time. The time unit is the
simulation’s time second. As mentioned in Section III, if the
determined path is inefficient, unnecessary driving and battery
consumption increase. Then the charging time also increases
accordingly. Recording and analyzing the charging time will
help compare the efficiency. As for the charging time, the
time consumed while the vehicle state was “charging” was
recorded.

B. Testing Results

Fig. 3 shows the average running time according to the
number of destinations. The horizontal axis represents the
number of destinations, and the vertical axis represents the
average running time. As shown in Fig 3, as the number of
destinations increases, the running time for both algorithms
increases. The running time of the greedy algorithm was a
little smaller than the branch-and-bound algorithm when the

1754

number of destinations is smaller than 7. However, the running
time of the greedy algorithm increased drastically than that of
the branch-and-bound algorithm. Then, the greedy algorithm
overtook the branch-and-bound algorithm. As the number
of destinations increases, the branch-and-bound algorithm’s
performance got better.

Fig. 4 shows the average charging time according to the
number of destinations. The horizontal axis means the number
of destinations, as shown in Fig. 3, and the vertical axis
represents the average charging time. Both algorithms recorded
similar times when the number of destinations is smaller than
7. Due to the small number of destinations, vehicles did not
have to charge. As the number of destinations increases, the
driving time naturally increases too. Therefore, the charg-
ing time increases regardless of the efficiency of the route.
However, when the number of destinations was over 7, the
charging time of the greedy algorithm got much bigger than
the branch-and-bound algorithm. As a result, the difference in
charging time was 41.1 and 63.2 seconds for each 7 and 9 case.
The difference in route efficiency between the two algorithms
confirmed in the running time analysis had also an effect on
the charging time analysis.

VI. CONCLUSION

This paper proposed an algorithm that calculates the most
efficient route when delivery vehicles have to visit multiple
destinations. The performance was measured through the
average running time and charging time according to the
number of parcel delivery destinations. As a result of the
experiment, the greedy algorithm resulted in bigger values
than the branch-and-bound algorithm in both average running
time and charging time. We found out that as the number
of destinations increased, the shortest path by the branch-
and-bound algorithm was faster than the one by the greedy
algorithm.

While performing experiments in this paper, it was difficult
to set the route for the branch-and-bound algorithm. As the
number of destinations increased, the number of cases to be
calculated also increased. As a result, it took considerable time
to calculate it, even though the branch-and-bound mechanism
excluded cases that cannot be a correct answer. Whereas the
greedy algorithm only needs to take into account the small
number of cases because it searches for the next target when
it arrives at each destination.

If branch-and-bound algorithms get applied to real indus-
tries, larger computational power will be needed. In future
work, we will research how to further reduce the amount of
calculation. Based on the result of this paper, we can find out a
more efficient way to reduce the calculation time. In addition,
we are going to research the Graph Neural Network (GNN)
to enhance the parcel delivery service by utilizing collected
travel-time data in navigation systems.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and
ICT (MSIT), Korea, under the Information Technology Re-

search Center (ITRC) support program (IITP-2022-2017-0-
01633) supervised by the Institute for Information & Com-
munications Technology Planning & Evaluation (IITP). This
work was supported in part by the IITP grant funded by the
Korea MSIT (No. 2022-0-01199, Regional strategic industry
convergence security core talent training business). Note that
Jaehoon (Paul) Jeong is the corresponding author.

REFERENCES

[1] J. Cho, B. Ahn, K. Hong, and I. Cheong, “Issues of digital trade rules
and implications for korea in the post covid-19 world,” Journal of
International Logistics and Trade, vol. 18, no. 3, pp. 137–147, 2020.

[2] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent
development and applications of sumo-simulation of urban mobility,”
International journal on advances in systems and measurements, vol. 5,
no. 3&4, 2012.

[3] D. Krajzewicz, “Traffic simulation with sumo–simulation of urban
mobility,” in Fundamentals of traffic simulation. Springer, 2010, pp.
269–293.

[4] C. Imielińska, B. Kalantari, and L. Khachiyan, “A greedy heuristic
for a minimum-weight forest problem,” Operations Research
Letters, vol. 14, no. 2, pp. 65–71, 1993. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/016763779390097Z

[5] B. Alidaee, G. A. Kochenberger, and M. M. Amini, “Greedy solutions
of selection and ordering problems,” European Journal of Operational
Research, vol. 134, no. 1, pp. 203–215, 2001.

[6] M. E. Pfetsch, “Branch-and-cut for the maximum feasible subsystem
problem,” SIAM Journal on Optimization, vol. 19, no. 1, pp. 21–38,
2008.

[7] Y. Asahina and J. Yang, “Death from overwork in a time of pandemic:
How delivery work became a locus of public debate in south korea,”
Journal of Contemporary Asia, pp. 1–18, 2022.

[8] M. Anshari, Q. Sakalayen, M. Fithriyah, and S. A. Lim, “Decision aid
in logistics during covid-19 induced disruption and significance of a
digital ecosystem,” in 2022 International Conference on Decision Aid
Sciences and Applications (DASA), 2022, pp. 1371–1377.

[9] G. A. Croes, “A method for solving traveling-salesman problems,”
Operations research, vol. 6, no. 6, pp. 791–812, 1958.

[10] D. S. Hochba, “Approximation algorithms for np-hard problems,” ACM
Sigact News, vol. 28, no. 2, pp. 40–52, 1997.

[11] W. Zhang, “Truncated branch-and-bound: A case study on the asymmet-
ric tsp,” in Proc. Of AAAI 1993 Spring Symposium on AI and NP-hard
problems, vol. 160166, 1993.

[12] N. M. Razali, J. Geraghty et al., “Genetic algorithm performance with
different selection strategies in solving tsp,” in Proceedings of the world
congress on engineering, vol. 2, no. 1. International Association of
Engineers Hong Kong, China, 2011, pp. 1–6.

[13] C. Theys, O. Bräysy, W. Dullaert, and B. Raa, “Using a tsp heuristic for
routing order pickers in warehouses,” European Journal of Operational
Research, vol. 200, no. 3, pp. 755–763, 2010.

[14] J. Rambau and C. Schwarz, “On the benefits of using np-hard prob-
lems in branch & bound,” in Operations research proceedings 2008.
Springer, 2009, pp. 463–468.

[15] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
journal on computing, vol. 1, no. 2, pp. 146–160, 1972.

1755

