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Abstract—Due to the development of an autonomous vehicle
industry, the route finding is the important feature for this
industry. This study proposes an intelligent parcel delivery
scheduling scheme that utilizes machine learning to optimize
delivery schedules for electric vehicles. The simulation involves
managing electric vehicles that visit randomly assigned multiple
destinations, and each vehicle determines the order of visits
based on the algorithm used. Through simulation, the paper
shows that the proposed scheme outperforms two legacy schemes
(i.e., greedy and branch-and-bound algorithms), considering both
route computation time and vehicle travel time.

Index Terms—Machine learning, parcel delivery, road net-
works, electric vehicles, TSP

I. INTRODUCTION

Similar to how telephones evolved from mere communi-
cation devices to smartphones with various functionalities,
cars are transitioning from simple transportation means to
mobile computers. Intelligent driving systems have garnered
significant attention in order to mitigate losses caused by
inexperienced driving or mistakes. These systems have ca-
pabilities such as autonomous lane recognition [1], distance
adjustment, and alerts of approaching vehicles during lane
changes. Users who have experienced these features often
anticipate fully autonomous driving in near future and express
a demand for it. Through the fully automated vehicle, drivers
can enjoy in-vehicle activities, such as streaming contents,
gaming and just relaxing. Those activities, which are called
infotainment, make drivers’ in-vehicle time meaningful. For
example, an electric device vendor Sony revealed the concept-
car with full display inside and outside of the car [2]. As Sony
already owns many game contents, industry expects that the
gaming experience will be equipped in fully self-driving car.
Consequently, automotive manufacturers are considering the
infotainment services in autonomous driving environments.

To make these activities work, the vehicle must perform the
fundamental tasks of safe and efficient driving. These tasks are
to select paths independently, avoid obstacles, recognize the
surroundings, and follow determined paths in cooperation with
other vehicles. Through software (SW) and hardware (HW),
these requirements can be fulfilled. Software technology has
demonstrated impressive performance across various domains
and is progressively expanding its range of applications.

In the automotive industry, SW applications, such as road
recognition through computer vision [3] and voice recognition
[4], contribute to enhancing the overall in-vehicle experience.
The most basic and fundamental task among the mentioned
requirements is a route planning task of navigation. Currently,
vehicle navigation systems leverage real-time road network
information to provide drivers with the fastest routes to their
destinations. However, such systems may overlook historical
data which could influence driving outcomes. Even if the
shortest route is computed, the driving experience may deviate
from expectations if such events are not considered.

Machine learning (ML) techniques offer a solution to this
problem by leveraging past driving data to learn patterns
and predict outcomes in specific situations. In the context of
vehicle navigation, ML techniques can be employed to forecast
traffic congestion. By employing an ML model trained on
historical data, congestion levels reflecting various scenarios
can be predicted and used to determine optimized routes.
Motivated by the potential and objectives of ML, this paper
undertook this research endeavor.

The research focuses on path planning for vehicles engaged
in specific missions. Specifically, it involves determining the
most costly efficient and fastest routes for delivery service
drivers who need to visit multiple destinations while min-
imizing time and fuel consumption. This scenario shares
similarities with a well-known problem in Computer Science
(CS) area, the Traveling Salesman Problem (TSP) [5]. TSP
addresses the question of the optimal order with which a
salesman should visit multiple destinations while minimizing
travel time and maximizing efficiency. As an NP-hard prob-
lem [6], calculating all possible combinations is theoretically
feasible but practically infeasible within a reasonable time-
frame. A Greedy algorithm [7] offers a fast and straightforward
implementation but does not guarantee an optimal solution. On
the other hand, a Branch-and-Bound algorithm computes all
possible combinations while pruning some cases. In this study,
after implementing a navigation system based on Greedy al-
gorithm, Branch-and-Bound algorithm, and Machine learning,
the performance of each technique was evaluated.

The remainder of this paper is organized as follows. Section
II summarizes the related work about the algorithms. Section
III describes the architecture of simulation for the performance

2023 Fourteenth International Conference on Mobile Computing and Ubiquitous Networking (ICMU)

978-4-907626-52-5/23/$31.00 ©2023 IPSJ 90



Fig. 1. Road network architecture based on SUMO and TraCI library

evaluation. Section IV shows the implementation of our nav-
igation system and Section V evaluates performance of our
simulation. Lastly, Section VI concludes this paper along with
future work.

II. RELATED WORK

This section provides an overview of the necessary knowl-
edge to comprehend this paper with the algorithms proposed
in recent literature.

The abbreviation TSP stands for the traveling salesman
problem, which holds significant popularity within the soft-
ware domain [8]. It involves identifying a most efficient route
while visiting all the assigned destinations. The salesman
initiates a journey from the starting point and must return
there. Due to the incredibly large number of possible routes,
exhaustive calculation within polynomial time becomes im-
possible to find shortest route. Consequently, this problem is
classified as NP-Hard [6]. To address the NP-Hard problem,
a heuristic algorithm is employed [9].

The heuristic algorithm includes the greedy algorithm,
which makes choices based on a best option at each step,
without considering overall optimization. As a result, it does
not guarantee the shortest route, but it provides a fast and
straightforward implementation that yields a reasonable so-
lution. Another algorithm, known as the Branch and Bound
(BnB) algorithm, was developed to solve the time-consuming
nature of classic algorithms [10]. To reduce calculation time,
this algorithm keeps the minimum value while evaluating
cases and compares it with the current calculated value. This
mechanism effectively eliminates unnecessary computations
[11].

Not only heuristic algorithms, machine learning methods
are applied to the navigation area. Polynomial regression [12]
is a type of regression analysis that models the relationship

between an independent variable and a dependent variable
using a polynomial function. Unlike linear regression, which
assumes a linear relationship, polynomial regression allows
for nonlinear relationships by incorporating higher-order poly-
nomial terms. The polynomial function fits a curve to the
data points, enabling it to capture more complex patterns and
variations. By including polynomial terms of different degrees,
such as quadratic or cubic terms, polynomial regression can
provide a more flexible and accurate representation of the data.
It is commonly used when the relationship between variables is
expected to be curvilinear rather than linear. Curvilinear refers
to a shape characterized by curved lines or paths, rather than
straight lines or linear trajectories. It describes the deviation
from a linear pattern, introducing curves, arcs, or bends in the
movement or form.

[13] tried to address the challenges of traffic congestion
monitoring and estimation in developing countries. The au-
thors propose using intelligent transport systems and machine
learning techniques to analyze and predict real-time traffic
conditions. The authors gather data from multiple devices
to identify traffic speed and congestion patterns, with the
aim of providing adaptable solutions for traffic management.
[14] compared the route searching methods, which are greedy
algorithm and BnB algorithm. In this research, BnB algorithm
resulted better performance in TSP situation. Based on this
paper, it is shown that a pruning method of the BnB algorithm
is helpful for reducing the calculation time and making the
BnB algorithm useful.

III. ARCHITECTURE

This section discusses the architecture and working flow
of our simulation to evaluate the performance of three meth-
ods. The simulation in this paper involves the management
of electric vehicles that visit multiple destinations assigned
randomly. Based on each algorithm, each electric vehicle
determines the order of visits and subsequently proceeds to
visit the destinations one step at a time. After visiting all the
destinations, each vehicle concludes its run and records the
total duration of the trip.

A. SUMO and Road Network

We employ the Simulation of Urban Mobility (SUMO) [15]
program for road network simulation. It allows researchers
to design road networks with customized features. Through
this simulator, programmers can simulate the various scenarios
of the urban traffic based on SUMO. To make the SUMO
simulation dynamic, we made use of the TraCI python library.
TraCI allows users to create objects for the simulation and
input them into the simulation environment. Moreover, the data
is available for users to extract while the vehicles are running
within a target road network based on the SUMO.

As shown in Fig. 1, the road network in our simulation
comprises edges, nodes (e.g., intersections), and lanes. Edges
connect nodes, and each edge consists of multiple lanes.
Traffic lights are present at all nodes and cycle through
patterns. Road networks is 12x12 grid pattern. Vehicles start
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Fig. 2. Overall work flow of all the algorithms

TABLE I
MEAN SQUARED ERROR AND R-SQUARED SCORE

Metric Score

Mean Squared Error 0.0019475
R-squared Score 0.8776582

running from same start point. Vehicles possess various at-
tributes, including an identification (id), state, battery capacity,
destination, and the id of the next charging station. Using the
vehicle id, the simulation can assign the destinations that need
to be visited by a vehicle. Each vehicle is an electric vehicle.
It searches for a charging station based on its own algorithm.
The road network is equipped with several charging stations.

B. Machine Learning: Polynomial Regression

We utilized a Polynomial Regression model to predict con-
gestion levels for each edge. Polynomial Regression predicts
a single output with multiple inputs. In this study, we used
four attributes to predict travel time for each edge as specified
as step 1 in Fig. 2. Pending Vehicles, Waiting Time, Last
Step Vehicle Number, and Last Step Mean Speed for each
edge were extracted from the SUMO simulator for input data
in advance. Travel Time for each edge was also extracted
for output. Since the data were collected at each step of the
simulation, it can be predicted in various situations.

Through this process, we extracted approximately 6.77
million data points. We also trained a Polynomial Regression
model using these training data as step 1. To assess the model’s
performance, the Mean Squared Error (MSE) and R-Squared
Score (R2) were calculated. MSE is used to measure the
average squared difference between the predicted and actual
values, providing a quantitative assessment of the model’s ac-
curacy. R2 is a statistical measure that indicates the proportion
of the variance in the dependent variable that is predictable
from the independent variables. It ranges from 0 to 1, with
higher values indicating a better fit of the model to the data. As
shown in Table I, MSE resulted in 0.0019475 and R-squared
Score resulted in 0.8776582. After the training process, the
model was saved to be loaded for future simulation.

C. Working Flow

Using the TraCI library, the SUMO simulator can be exe-
cuted with customized conditions based on Python code. We
aim to determine driving routes for electric vehicles with mul-
tiple destinations using three approach such as Greedy algo-
rithm, BnB algorithm and Machine Learning (ML) technique.
To ensure consistent experimentation in the same environment,
we implemented all the methods with identical destination
information.

The overall process is shown in Fig. 2. Upon the execution
of the TraCI code, the simulation commences, and the TraCI
code generates vehicles and their corresponding destination
lists randomly. Subsequently, each vehicle is assigned a des-
tination list. Then, code executes the iteration to run all three
algorithms with same destination list for vehicles as steps 2
and 3 in Fig. 2. When each algorithm ends, driving records are
saved as a file containing the running time, charging time, and
calculation time for each vehicle in step 5. Based on the saved
information, the efficiency of each algorithm can be compared.

Even if the biggest difference among algorithms is the way
it finds the efficient route to visit all the destinations. In the
case of the greedy algorithm and ML, the complete sequence
of visiting orders is not predetermined prior to the initial
departure. As a result, methods go back to step 3 after step
4-1 to select an optimal choice at each destination. ML utilizes
the trained model and current edge information to predict the
travel time of the edges when determining the next destination.

In the case of the BnB algorithm, the entire route is
determined before the initial departure unlike the greedy
algorithm. Consequently, additional search time for finding the
next destination is unnecessary at each destination. Based on
the calculated information, the fastest route can be explored.
This process employs Depth-First Search (DFS) and the BnB
algorithm.

IV. IMPLEMENTATION

In this section, detailed implementations of the Greedy
algorithm, BnB algorithm and Machine learning are described.

A. Greedy Algorithm

In Greedy algorithm, once a vehicle reaches its targeted
destination, it searches for the next destination to visit. In
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Algorithm 1 Greedy Algorithm
1: function FINDNEXTGREEDY(from)
2: for i to length(D) do
3: if distance(from,D[i]) < min then
4: min← distance(from,D[i])
5: T ← i
6: end if
7: end for
8: end function

9: T ← 0
10: D ← DestinationList
11: S ← StartingPoint
12: while length(D) > 0 do
13: min← sys.maxsize
14: if Not Running then
15: FINDNEXTGREEDY(S)
16: RUN()
17: else if Running & Arrived then
18: REMOVEFROMD(T )
19: FINDNEXTGREEDY(T )
20: RUN()
21: end if
22: end while

Algorithm 2 Branch and Bound Algorithm
1: function DFS(visited, value, min, final, destNum)
2: if min < value then
3: return ▷ Branch and Bound part
4: end if
5: if length(visited) == length(destNum) then
6: final← visited
7: return
8: end if
9: for i to length(destNum) do

10: if i not in visited then
11: VISITED.APPEND(i)
12: value← value+ distanceTo(i)
13: DFS(visited, value, min, final, destNum)
14: VISITED.POP()
15: end if
16: end for
17: end function

Algorithm 1, T represents the road ID of the current destina-
tion, D is the list of assigned destinations, and S denotes the
starting point. The algorithm updates minimum value (denoted
as min), and finds the nearest destination using FindNext()
function. This process continues until the vehicle finish visiting
all assigned destinations.

If vehicle is at start point, the vehicle calculates a closest
destination prior to departure. After that, the vehicle begins
driving towards the first destination. If it is running, it needs
to determine the next destination to proceed with. The vehicle
removes the destination which it has already visited from

Algorithm 3 Machine Learning Method
1: function FINDNEXTML(edgeList, PRmodel, Dests)
2: ExpT ime← COLLECTEDGEDATA(edgeList, PRmodel)
3: Distances, Predec← DIJKSTRA(ExpTime)
4: Costs← 0 ▷ Initialize Costs
5: for dest in Dests do
6: Costs← Costs+Distances[dest]
7: end for
8: NextDest← MIN(Costs)
9: Route← SHORTESTPATH(Predec, NextDest)

10: return NextDest and Route
11: end function

12: function COLLECTEDGEDATA(edgeList, PRmodel)
13: finalData← []
14: for edge in edgeList do
15: finalData← finalData+ pendingV eh
16: finalData← finalData+ waitingT ime
17: finalData← finalData+meanSpeed
18: finalData← finalData+ vehNum
19: end for
20: TravelT ime← PRMODEL(finalData)
21: return TravelT ime
22: end function

the list through RemoveFromD() function. Subsequently, it
searches for the next destination to reach based on its current
location, utilizing FindNext() function. This iteration con-
tinues until there are no more destinations to visit, indicating
that D is empty. The time complexity is O(n) when n is the
number of destination.

B. Branch and Bound Algorithm

The BnB algorithm includes a mechanism to reduce com-
putation time while considering all possible cases. The BnB
algorithm utilizes a DFS [16] algorithm. It also utilizes pa-
rameters such as min and D. The visited list (denoted as
visited) sequentially records the visited destinations, and the
final list contains a path that DFS() function will ultimately
return. destNum represents the number of destinations to be
visited, and value records the accumulated time during the
path exploration.

In Algorithm 2, DFS() function has a recursive structure.
When the function is called, value is updated by adding the
additional time to reach the next destination. The visited list
is updated by adding the next destination. If the length of the
visited list is equal to destNum, the path is stored in final,
and returned. The min value is continuously updated. If the
intermediate cost is already greater than the min value, that
case is not proceeded more. The time complexity is O(nn)
when n is the number of destination.

C. Machine Learning Method

In ML method, it determines the nearest destination based
on not only the data provided by the simulation but also a pre-
trained Polynomial Regression model. This model calculates
the anticipated congestion level for each edge. Then, employ-
ing Dijkstra’s algorithm, which considers the congestion level
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Fig. 3. Average running time according to the number of destinations

as the cost, it determines the minimum cost required to reach
each edge in the road network.

In Algorithm 3, FindNextML() requires the pre-trained
Polynomial Model and the list of remaining destinations
for the vehicle as input. It then passes the edgeList and
Polynomial model to CollectEdgeData(). This function uses
the Polynomial Model with the current simulation data to
calculate the anticipated Travel Time for each edge and returns
it. FindNextML() utilizes the estimated Travel Time to
determine the shortest cost as Distances for each edge and
the corresponding shortest path information as Predec.

The Cost variable stores the minimum cost for the des-
tinations. Among these costs, the destination with the least
cost is selected as NextDest. Then Route is returned, which
represents a shortest path to reach NextDest. Ultimately,
FindNextML() computes and returns the next destination
and the corresponding route for the vehicle is provided with
Route and NextDest. The time complexity is O(n2) when
n is the number of destination.

V. PERFORMANCE EVALUATION

This section describes the experiment environment and the
performance results of the three methods.

A. Experiment

As shown in Figs. 3, 4, and 5, this study conducted
performance measurement under various conditions. A vehicle
number is fixed as 30, and the number of destinations varies
from 1 to 13 and parcels are equally distributed on every
vehicle at first. Authors did not limit the delivery time. Each
experiment was repeated 10 times, and an error bar was used
as a 95% confidence interval for performance evaluation.

Average travel time, average charging time, and average
computation time were set as performance evaluation met-
rics. Average charging time represents the time spent at the
charging station. In the case where the designated route is
inefficient, the vehicle may travel a greater distance, resulting

Fig. 4. Average charging time according to the number of destinations

Fig. 5. Average calculation time according to the number of destinations

in charging during operation. Average computation time refers
to the time to search for routes toward the target. While the
most efficient routes are important in real-world, guaranteeing
moderate computation time for real-world is also a crucial
factor.

B. Testing Results

In Fig. 3, the horizontal axis is the number of destinations
and the vertical axis is average running time. As the number
of destinations increases, the average running time of all
the methods and gaps between them are getting bigger. A
bigger curve means inefficient. Based on the graph, the greedy
algorithm shows the worst performance. As greedy algorithm
just consider the status of present and do not consider the opti-
mization of route efficiency, it resulted the worst performance.
Between the other two methods, BnB algorithm resulted in the
lower running time. From five destinations, it kept resulting
in the best performance among all the methods.
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Fig. 6. Difference ratio between ML and BnB methods in terms of running
time and calculation time

In Fig. 4, the vertical axis is average charging time. When
the efficiency of the route is low, a vehicle has no choice but to
wander the road network and consumes more energy. Based
on this logic, the charging time of the vehicle can be used
as a performance metric for the efficiency of the determined
route. Similar to Fig. 3, the greedy algorithm showed the
worst performance and the BnB algorithm resulted in best
performance, too.

However, what we need to consider is the feasibility in real-
world. If its calculation time is too long, drivers cannot use
the method even if it results in the most effective route for
vehicles. Based on this concern, we recorded the calculation
time of the ML and BnB algorithms as shown in Fig. 5.
Ratio between the two methods in terms of Running time and
Calculation time is shown in Fig. 6 in a percentage format.
The running time difference ratio between two methods are
not so big, from 2% to 15%. However, the calculation time
difference ratio between two methods get bigger. It resulted
in 325, 894% when the number of destinations is 13. As this
calculation time is not acceptable to be used in the real world,
we concluded that the ML method is better choice even if BnB
results in an optimal route.

VI. CONCLUSION

This paper researched on which algorithm results in best
efficient route for TSP situation. Through this research, deliv-
ery service vehicles can be run based on an efficient route and
make logistics industry more efficient.

Three performance metrics were compared, such as running
time, charging time, and calculation time. As a result, the BnB
algorithm resulted in the best route for this navigation problem
and the worst calculation time. Through this, we concluded
that the calculation time is also important feature in terms of
a navigation method. As a result, the BnB method can be more
efficient when there are a small number of destination as its
calculation time gets bigger when there are a large number of

destinations. When there are a large number of destination, the
ML method is better than the BnB algorithm as ML provides
a moderate route for vehicles and takes shorter time than the
BnB algorithm.

As a future work, only Polynomial Regression was applied,
but we will consider other machine learning models or another
method to spread the traffic through road networks.
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